Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Sokolova, Marina V. | Fernández-Caballero, Antonio; *
Affiliations: Instituto de Investigación en Informática de Albacete (i3A) and Departamento de Sistemas Informáticos, Universidad de Castilla-La Mancha, Albacete, Spain
Correspondence: [*] Corresponding author: Antonio Fernández-Caballero, Instituto de Investigación en Informática de Albacete (i3A) and Departamento de Sistemas Informáticos, Universidad de Castilla-La Mancha, 02071, Albacete, Spain. E-mail: Antonio.Fdez@uclm.es.
Abstract: Complex emergent systems are known to be ill-managed because of their complex nature. This article introduces a novel interdisciplinary approach towards their study. In this sense, the DeciMaS methodological approach to mining and simulating data in complex information systems is introduced. The DeciMaS framework consists of three principal phases, preliminary domain and system analysis, system design and coding, and simulation and decision making. The framework offers a sequence of steps in order to support a domain expert who is not a specialist in data mining during the knowledge discovery process. With this aim a generalized structure of a decision support system (DSS) has been worked out. The DSS is virtually and logically organized into a three-leveled architecture. The first layer is dedicated to data retrieval, fusion and pre-processing, the second one discovers knowledge from data, and the third layer deals with making decisions and generating output information. Data mining is aimed to solve the following problems: association, classification, function approximation, and clustering. DeciMaS populates the second logical level of the DSS with agents which are aimed to complete these tasks. The agents use a wide range of data mining procedures that include approaches for estimation and prediction: regression analysis, artificial networks (ANNs), self-organizational methods, in particular, Group Method of Data Handling, and hybrid methods. The association task is solved with artificial neural networks. The ANNs are trained with different training algorithms such as backpropagation, resilient propagation and genetic algorithms. In order to assess the proposal an exhaustive experiment, designed to evaluate the possible harm caused by environmental contamination upon public health, is introduced in detail.
Keywords: Complex systems, decision support systems, data mining, simulation
DOI: 10.3233/IDA-130605
Journal: Intelligent Data Analysis, vol. 17, no. 5, pp. 753-769, 2013
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl