Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Chen, Toly; * | Wang, Yi-Chi
Affiliations: Department of Industrial Engineering and Systems Management, Feng Chia University, Taichung, Taiwan
Correspondence: [*] Corresponding author. E-mail: tolychen@ms37.hinet.net.
Abstract: The global CO2 concentration is considered to be one of the most important causes of global warming that must be closely monitored, accurately forecasted, and controlled as good as possible. To accurately forecast the global CO2 concentration, a hybrid fuzzy linear regression (FLR) and back propagation network (BPN) approach is proposed in this study. In this proposed approach, multiple experts construct their own FLR equations from various viewpoints to forecast future global CO2 concentrations. Each FLR equation can be converted into two equivalent nonlinear programming problems to be solved. To combine these fuzzy forecasts, a two-step aggregation mechanism is applied. At the first step, fuzzy intersection is applied to combine the fuzzy global CO2 concentration forecasts into a polygon-shaped fuzzy number, in order to improve the precision. After that, a BPN is constructed to defuzzify the polygon-shaped fuzzy number and to generate a representative/crisp value, so as to enhance the accuracy. Some historical data on global CO2 concentrations were used to evaluate the effectiveness of the proposed methodology. According to the experimental results, the proposed methodology improved both the precision and the accuracy of forecasting the global CO2 concentration by 28% and 91%, respectively.
Keywords: Back propagation network, forecasting, fuzzy linear regression, global CO2 concentration
DOI: 10.3233/IDA-2011-0494
Journal: Intelligent Data Analysis, vol. 15, no. 5, pp. 763-777, 2011
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl