Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Gama, Joãoa | Fernandes, Ricardob | Rocha, Ricardob
Affiliations: [a] LIACC, FEP – University of Porto, Rua de Ceuta, 118-6, 4050-190 Porto, Portugal. E-mail: jgama@liacc.up.pt | [b] Department of Mathematics, University of Aveiro, Aveiro, Portugal. E-mail: tbs@mat.ua.pt, ricardor@mat.ua.pt
Abstract: In this paper we study the problem of constructing accurate decision tree models from data streams. Data streams are incremental tasks that require incremental, online, and any-time learning algorithms. One of the most successful algorithms for mining data streams is VFDT. We have extended VFDT in three directions: the ability to deal with continuous data; the use of more powerful classification techniques at tree leaves, and the ability to detect and react to concept drift. VFDTc system can incorporate and classify new information online, with a single scan of the data, in time constant per example. The most relevant property of our system is the ability to obtain a performance similar to a standard decision tree algorithm even for medium size datasets. This is relevant due to the any-time property. We also extend VFDTc with the ability to deal with concept drift, by continuously monitoring differences between two class-distribution of the examples: the distribution when a node was built and the distribution in a time window of the most recent examples. We study the sensitivity of VFDTc with respect to drift, noise, the order of examples, and the initial parameters in different problems and demonstrate its utility in large and medium data sets.
Keywords: Data streams, concept drift, incremental decision trees
DOI: 10.3233/IDA-2006-10103
Journal: Intelligent Data Analysis, vol. 10, no. 1, pp. 23-45, 2006
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl