Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Tay, Francis Eng Hock | Cao, Li Juan
Affiliations: Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore. E-mail: mpetayeh@nus.edu.sg
Abstract: A two-stage neural network architecture constructed by combining Support Vector Machines (SVMs) with self-organizing feature map (SOM) is proposed for financial time series forecasting. In the first stage, SOM is used as a clustering algorithm to partition the whole input space into several disjoint regions. A tree-structured architecture is adopted in the partition to avoid the problem of predetermining the number of partitioned regions. Then, in the second stage, multiple SVMs, also called SVM experts, that best fit each partitioned region are constructed by finding the most appropriate kernel function and the optimal learning parameters of SVMs. The Santa Fe exchange rate and five real futures contracts are used in the experiment. It is shown that the proposed method achieves both significantly higher prediction performance and faster convergence speed in comparison with a single SVM model.
Keywords: financial time series forecasting, non-stationarity, support vector machines, self-organizing feature map
DOI: 10.3233/IDA-2001-5405
Journal: Intelligent Data Analysis, vol. 5, no. 4, pp. 339-354, 2001
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl