Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Naik, Ganesh R.
Affiliations: RMIT University, GPO BOX 2476V, Victoria-3001, Australia, e-mail: ganesh.naik@rmit.edu.au
Abstract: Conventional Blind Source Separation (BSS) algorithms separate the sources assuming the number of sources equals to that of observations. BSS algorithms have been developed based on an assumption that all sources have non-Gaussian distributions. Most of the instances, these algorithms separate speech signals with super-Gaussian distributions. However, in real world examples there exist speech signals which are sub-Gaussian. In this paper, a novel method is proposed to measure the separation qualities of both super-Gaussian and sub-Gaussian distributions. This study measures the impact of the Probability Distribution Function (PDF) of the signals on the outcomes of both sub and super-Gaussian distributions. This paper also reports the study of impact of mixing environment on the source separation. Simulation improves the results of the separated sources by 7 dB to 8 dB, and also confirms that the separated sources always have super-Gaussian characteristics irrespective of PDF of the signa ls or mixtures.
Keywords: blind source separation, probability distribution function, independent component analysis, kurtosis, signal to interference ratio, sub-Gaussian, super-Gaussian
Journal: Informatica, vol. 23, no. 4, pp. 581-599, 2012
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl