Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Yao, Chih-Chia | Yu, Pao-Ta
Affiliations: Department of Computer Science and Information Engineering, Chaoyang University of Technology, Wufong, Taichung 41349, Taiwan, e-mail: cedric@nkc.edu.tw | Department of Computer Science and Information Engineering, National Chung Cheng University, Ming-Hsiung, Chiayi 62102, Taiwan, e-mail: csipty@cs.ccu.edu.tw
Abstract: In this paper we propose a modified framework of support vector machines, called Oblique Support Vector Machines(OSVMs), to improve the capability of classification. The principle of OSVMs is joining an orthogonal vector into weight vector in order to rotate the support hyperplanes. By this way, not only the regularized risk function is revised, but the constrained functions are also modified. Under this modification, the separating hyperplane and the margin of separation are constructed more precise. Moreover, in order to apply to large-scale data problem, an iterative learning algorithm is proposed. In this iterative learning algorithm, three different schemes for training can be found in this literature, including pattern-mode learning, semi-batch mode learning and batch mode learning. Besides, smooth technique is adopted in order to convert the constrained nonlinear programming problem into unconstrained optimum problem. Consequently, experimental results and comparisons are given to demonstrate that the performance of OSVMs is better than that of SVMs and SSVMs.
Keywords: SVMs, rotate, orthogonal vector, pattern-mode, batch-mode
Journal: Informatica, vol. 18, no. 1, pp. 137-157, 2007
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl