Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Chakrabarti, Saikat | Manohari, Gowri | Pugalenthi, Ganesan | Sowdhamini, Ramanathan
Affiliations: National Centre for Biological Sciences, UAS-GKVK campus, Bellary Road, Bangalore 560 065, India | Avinashalingam Institute, Coimbatore 641 043, India
Note: [] Corresponding author. Tel.: +91 80 23636421; Fax: +91 80 23636462; E-mail: mini@ncbs.res.in
Abstract: The presence of sequence homologues and the availability of structural information of proteins enable better understanding of the biological function of a protein family. A majority of entries in protein structural databank are single member superfamilies for which it is hard to derive motifs due to the paucity of structural homologues. Important conserved segments for these superfamilies have been identified and compiled into a database, SSToSS (Sequence Structural Templates of Single member Superfamily). Conserved regions, recognized by permitted amino acid exchanges, are mapped on the structure and various structural features (solvent accessibility, secondary structure content, hydrogen bonding and residue packing) are examined. These conserved segments with high structural feature content are projected as sequence-structural templates for the particular superfamily member. Interactive three-dimensional displays of the templates in three-dimensional structure (in Chime® and RASMOL) are provided for better understanding and visualization. In SSToSS database, we also provide the application of sequence-structural templates in three different areas: multiple-motif based sequence search, multiple sequence alignment and homology modeling. In each case, the inclusion of the sequence-structural templates can give rise to sensitive and accurate results. This enables the inclusion of singletons to provide added value to the recognition of additional members, comparative modeling and in designing experiments.
Keywords: Conserved regions, motif-based database search, comparative modeling, spatial orientation of motifs, superfamily signatures, distant similarity, protein structure prediction
Journal: In Silico Biology, vol. 6, no. 4, pp. 311-319, 2006
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl