Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Liu, Huiqing | Han, Hao | Li, Jinyan | Wong, Limsoon
Affiliations: Institute for Infocomm Research, 21 Heng Mui Keng Terrace, Singapore, 119613. E-mail: {huiqing, hanhao, jinyan, limsoon}@i2r.a-star.edu.sg
Abstract: The translation initiation site (TIS) prediction problem is about how to correctly identify TIS in mRNA, cDNA, or other types of genomic sequences. High prediction accuracy can be helpful in a better understanding of protein coding from nucleotide sequences. This is an important step in genomic analysis to determine protein coding from nucleotide sequences. In this paper, we present an in silico method to predict translation initiation sites in vertebrate cDNA or mRNA sequences. This method consists of three sequential steps as follows. In the first step, candidate features are generated using k-gram amino acid patterns. In the second step, a small number of top-ranked features are selected by an entropy-based algorithm. In the third step, a classification model is built to recognize true TISs by applying support vector machines or ensembles of decision trees to the selected features. We have tested our method on several independent data sets, including two public ones and our own extracted sequences. The experimental results achieved are better than those reported previously using the same data sets. Our high accuracy not only demonstrates the feasibility of our method, but also indicates that there might be "amino acid" patterns around TIS in cDNA and mRNA sequences.
Keywords: translation initiation site, feature generation, k-gram amino acid patterns, feature selection, classification
Journal: In Silico Biology, vol. 4, no. 3, pp. 255-269, 2004
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl