Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Kabzinski, Jaceka | Maczynska, Monikaa | Kaczmarczyk, Dariuszb | Majsterek, Ireneusza; *
Affiliations: [a] Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Łodz, Poland | [b] Department of Head and Neck Neoplasm Surgery, Medical University of Lodz, Łodz, Poland
Correspondence: [*] Corresponding author: Ireneusz Majsterek, Department of Clinical %****␣cbm-32-cbm203163_temp.tex␣Line␣25␣**** Chemistry and Biochemistry, Narutowicza 60, 90-136 Łodz, Poland. E-mail: ireneusz.majsterek@umed.lodz.pl.
Abstract: BACKGROUND: Reduced efficiency of DNA repair systems has long been a suspected factor in increasing the risk of cancer. OBJECTIVE: In this work we investigate influence of three selected polymorphisms of DNA repair gene XRCC1 and level of oxidative damage (measured as level of 8-oxo-guanine) on modulation of the risk of HNSCC. METHODS: In group of 359 patients with HNSCC (diagnosed with OSCC) the occurrence of polymorphic variants in Arg399Gln, Arg280His and Arg194Trp of XRCC1 were studied with TaqMan technique. In addition we determined level of 8-oxo-guanine with ELISA. RESULTS: Arg399Gln polymorphism and Arg194Trp polymorphism of XRCC1 gene increases the risk of HNSCC. The coexistence of Arg399Gln and Arg194Trp simultaneously enhances this effect. At the same time, their coexistence with His280His raises the risk to a level higher than in the absence of such coexistence, although the His280His itself is not associated with an increased risk of HNSCC. Patients have higher levels of 8-oxo-guanine than control group, and His280His is polymorphism with highest mean value of 8-oxoG level among studied. CONCLUSION: Patients with HNSCC not only have an increased level of 8-oxoguanine and the Arg399Gln and Arg/Trp of XRCC1 modulate risk of cancer, but there is also a relationship between these two phenomena, and it can be explained using intragenic combinations revealing that a high level of 8-oxoG could be a potential mechanism behind the modulation of HNSCC risk by the polymorphisms studied.
Keywords: HNSCC, OSCC, DNA repair, oxidative stress, XRCC1
DOI: 10.3233/CBM-203163
Journal: Cancer Biomarkers, vol. 32, no. 3, pp. 317-326, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl