Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Cellular and Molecular Bioengineering
Article type: Research Article
Authors: Prince, Shanthi | Malarvizhi, S.
Affiliations: School of ECE, SRM University, Kattankulathur, India
Note: [] Corresponding author. Tel.: +91 9444962179; Fax: +91 44 27453903; E-mail: shanthi.prince@ece.srmuniv.ac.in
Abstract: The spectral reflectance measurements in tissue reveal physiological meaning. Normally, functional changes like, increase in total hemoglobin concentration, decrease in oxygen saturation, etc., are observed when there is an abnormality creeping in the normal tissue. These functional changes can act together to reveal disease by non-invasive near-infrared (NIR) spectroscopy, as it influence its optical properties. In the present study, a simple two dimensional, four layer model of breast is proposed. The four layers are (i) skin (ii) adipose layer (iii) glandular tissue and (iv) muscle. Each layer is modeled with appropriate biological chromophores like hemoglobin, water, lipid and melanin. From the literature, the concentrations and molar extinction coefficients of the chromophores in various layers of the model are obtained. These values are used to calculate the wavelength dependent absorption characteristics of a particular layer. Monte Carlo simulation of diffuse reflectance (percentage of back reflected photons after multiple scattering with the broad variety of angles) are simulated for the modeled breast tissue with and without diseased condition. Near-infrared wavelengths are chosen, as the depth of penetration in tissue is more compared to UV and visible region. Simulations are carried out on the modeled breast tissue for different races (skin colors) at different NIR wavelengths. Results show significant changes in diffuse reflectance and relative absorbance for normal and diseased breast tissues for differently pigmented model. This model can be used to study the photo dynamical therapy, drug delivery and prognosis of cancer.
Keywords: Diffuse reflectance, chromophores, modeling and Monte Carlo simulations
Journal: BioFactors, vol. 30, no. 4, pp. 255-263, 2007
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl