Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: May, James M.; | Li, Liying | Qu, Zhi-chao | Cobb, Charles E.
Affiliations: Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA | Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
Note: [] Address for correspondence: Dr. James May, 7465 Medical Preston Research Building, Vanderbilt University School of Medicine, Nashville, TN 37232-0475, USA. Tel.: +1 615 936 1653; Fax: +1 615 936 1667; E-mail: james.may@vanderbilt.edu
Abstract: Mitochondria are the major source of potentially damaging reactive oxygen species in most cells. Since ascorbic acid, or vitamin C, can protect against cellular oxidant stress, we studied the ability of mitochondria prepared from guinea pig skeletal muscle to recycle the vitamin from its oxidized forms. Although ascorbate concentrations in freshly prepared mitochondria were only about 0.2 mM, when provided with 6 mM succinate and 1 mM dehydroascorbate (the two-electron-oxidized form of the vitamin), mitochondria were able to generate and maintain concentrations as high as 4 mM, while releasing most of the ascorbate into the incubation medium. Mitochondrial reduction of dehydroascorbate was strongly inhibited by 1,3-bis(chloroethyl)-1-nitrosourea and by phenylarsine oxide. Despite existing evidence that mitochondrial ascorbate protects the organelle from oxidant damage, ascorbate failed to preserve mitochondrial α-tocopherol during prolonged incubation in oxygenated buffer. Nonetheless, the capacity for mitochondria to recycle ascorbate from its oxidized forms, measured as ascorbate-dependent ferricyanide reduction, was several-fold greater than total steady-state ascorbate concentrations. This, and the finding that more than half of the ascorbate recycled from dehydroascorbate escaped the mitochondrion, suggests that mitochondrial recycling of ascorbate might be an important mechanism for regenerating intracellular ascorbate.
Keywords: Dehydroascorbic acid, ferricyanide, oxidant stress, α-tocopherol, mitochondria
Journal: BioFactors, vol. 30, no. 1, pp. 35-48, 2007
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl