Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Murakami, Akira | Song, Meiyu | Ohigashi, Hajime
Affiliations: Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
Note: [] Address for correspondence: Dr. Akira Murakami, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan. Tel.: +81 75 753 6282; Fax: +81 75 753 6284; E-mail: cancer@kais.kyoto-u.ac.jp
Abstract: Osteoclastogenesis is induced by differentiation of hemopoietic cells of monocyte-macrophage lineage into bone-resorbing osteoclasts. The process is initiated by receptor activator of NF-kappaB ligand (RANKL) and resultant activation of mitogen-activated protein kinases (MAPK), including extracellular signal-regulated kinase (ERK)1/2, as well as the NFκB pathway. Phenethyl isothiocyanate (PEITC), a phytochemical present in various cruciferous plants, has been shown to disrupt those signaling pathways in several cell types. In this study, we examined the efficacy of PEITC for suppressing RANKL-induced osteoclastogenesis in RAW264.7 murine macrophages and addressed the underlying molecular mechanisms. PEITC (2–10 μM) suppressed osteoclastogenesis in a concentration dependent manner, as detected by tartarate-resistant acid phosphatase (TRAP) activity and microscopic observations. RANKL-up-regulated extracellular signal-regulated kinase (ERK)1/2 and p38 mitogen-activated protein kinase (MAPK) activities were attenuated by PEITC, whereas c-Jun N-terminal kinase (JNK1/2) activation was increased. PEITC also abrogated the RANKL-induced degradation of IκB-α, a suppressive partner of nuclear factor kappaB (NFκB), thereby inhibiting transcription activity, as detected by a reporter assay. In addition, PEITC reduced the level of NFκB-dependent mRNA expression of nuclear factor of activated T cell (NFAT)c1, a master regulator of osteoclastogenesis. Our results indicate that PEITC is a promising agent for treatment of osteoclastogenesis with a reasonable action mechanism.
Keywords: Osteoclastogenesis, RANKL, isothiocyanate, MAP kinase, RAW264.7 cells
Journal: BioFactors, vol. 30, no. 1, pp. 1-11, 2007
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl