Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Sreedharan, Sanju
Affiliations: Department of Civil Engineering, SCMS School of Engineering and Technology, Karukutty, Ernakulam, Kerala - 683576, India, sanjus@scmsgroup.org
Abstract: Zero energy technologies and sustainable energy production are the two major concerns of present day researches. Microbial fuel cells (MFCs) are bioreactors that extract chemical energy stored in organic compounds, into electric potential, through bio-degradation. The core reason for the high strength of effluent generated from slaughterhouses is animal blood. The current study evaluates the potential of MFC technology to reduce the pollution strength of cattle blood in terms of chemical oxygen demand (COD). The current study was piloted in three stages using lab scale two chambered MFC: The first stage was to determine the best oxidising agent as compared to natural aeration from three accessible options, KMnO4, diffused aeration and tape grass aquatic plant. KMnO4 was found to be the superlative with a 30% reduction in COD in 100 hrs batch reactor and a maximum power of 0.97 mW using 125 mL livestock blood. The second stage of the study optimised the concentration of KMnO4. At 500 mg/L KMnO4 concentration, 50% COD removal efficiency was acquired in a batch reactor of 60 hrs with an average energy output of 1.3 mW. In the final stage on the addition of coconut shell activated carbon with an Anolyte at a rate of 40 mL/125 mL of substrate COD removal efficiency increased to 74.9%.
Keywords: Adsorption, bio-energy, cattle blood, microbial fuel cell, wastewater treatment
DOI: 10.3233/AJW210053
Journal: Asian Journal of Water, Environment and Pollution, vol. 18, no. 4, pp. 135-140, 2021
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
sales@iospress.com
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
info@iospress.nl
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office info@iospress.nl
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
china@iospress.cn
For editorial issues, like the status of your submitted paper or proposals, write to editorial@iospress.nl
如果您在出版方面需要帮助或有任何建, 件至: editorial@iospress.nl