Abstract: In this study, a novel negative stiffness spring is developed. The developed spring possesses the characteristics of the controllable stiffness and can be employed in vibration isolation system with a low resonance frequency. The controllable electromagnetic negative stiffness spring (CENSS) is obtained by the coaxial permanent magnets (PMs) and the circular current-carrying coils. The stiffness control is accomplished by changing the current in the coils. Furthermore, the mathematical model of CENSS is established, based on the filament method. According to the model, the relationship between the exciting current and the axial stiffness is obtained. Moreover, the influence of the structural…parameters of CENSS on the magnetic force and the stiffness is analyzed. The results demonstrate that the thickness of PMs and the coils have the ability to adjust the range of the negative stiffness. Finally, performance experimental study of CENSS in the stiffness domain is carried out under different exciting currents and thicknesses. The experimental results have shown a good agreement with the model. It demonstrates that the performance of negative stiffness in CENSS can be controlled efficiently by the exciting current and optimized by the thickness.
Show more
Keywords: Magnetic stiffness, electromagnetic springs, negative stiffness, vibration isolation