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Abstract. This study investigates the effects of the number of interpolation points on the prediction accuracy of segment an-
gle trajectory during lifting.  Ten participants performed various lifting tasks while a motion tracking system recorded their 
movements.  Two-point through ten-point equal time-spaced segment angles extracted from major segment trajectory data 
captured by the motion tracking system were used to re-generate the whole body lifting motion by using polynomial and cubic 
spline interpolation methods. The root mean square error (RMSE) between the reference (motion tracking system) and the 
estimated (interpolation method) segment angle trajectories were calculated to quantify the prediction accuracy. The results 
showed that the cubic spline interpolation will yield a smaller RMSE value than one based on the polynomial interpolation.  
While increasing the number of interpolation points can reduce the RMSE of the estimated segment angle trajectories, there 
was a diminishing advantage in continuing to add interpolation points. A sensitivity analysis suggests that if the estimation of 
the segment angles at each interpolation point deviates considerably from the real value, and cannot be controlled at a low level 
(<10 º), the use of higher number of interpolation points will not improve the estimation accuracy. 
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1.  Introduction 

Multiple-linked segment biomechanical models 
have often been used in research by ergonomists to 
quantify and evaluate the movements and joint load-
ings of manual lifting tasks.  To assess the kinematics 
and kinetics of manual lifting tasks, displacement-
time data for the various body segments of interest 
must be known. 

Previous research studies have examined the use 
of interpolation methods to generate a plausible con-
tinuous movement trajectory from separate postures 
for computer animation and virtual reality applica-
tions [1- 3]. For estimating the dynamic motion of 
lifters, studies [4, 5] have proposed a computerized 
video posture coding approach for predicting the 
detailed body segment movements over the course of 
lifting tasks from field survey videos. Field survey 
videos are easy to obtain at the workplace and are 

actually capable of providing much valuable infor-
mation, including time and duration of the lifting task 
configuration. It can also provide key lifting postures 
by slow motion playback. The main idea of a video 
posture coding approach was that the subject’s seg-
ment angle movement could be estimated and rege-
nerated by a polynomial regression based on coder-
identified major segment angles of selected key lift-
ing postures extracted from the side-view video clips 
of the lifting task. With the advent of such simulation 
models, it is possible to describe and assess lifting 
tasks when the use of a motion tracking system is 
limited or unavailable due to practical restrictions. 
However, in the earlier research studies, the relation-
ship between the minimum required number of inter-
polation key lifting posture frames and the estimation 
accuracy of segment angle trajectories was unclear 
and has not been systematic investigated in detail. 
Additionally, it has been proven that the polynomial 
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interpolation algorithm is not convergent as the num-
ber of interpolation node increases.  Also not clari-
fied was whether the use of different interpolation 
algorithms, such as cubic spline interpolation method, 
could provide a better prediction model in compari-
son to the polynomial interpolation algorithm that 
was originally used in earlier studies. 

In the current study, the effects of the interpolation 
algorithms and number of interpolation points on the 
prediction accuracy are further investigated.   In ad-
dition, a sensitivity analysis was also performed to 
investigate how the root mean square error (RMSE) 
changed if the segment angles used for the interpola-
tions randomly deviated from the actual ones (to si-
mulate the error due to imperfect posture estimation 
of the segment angle). 

2. Method 

2.1. Participants 

Ten male participants in good health and free of 
musculoskeletal disorders were recruited to partici-
pate in this study.  The means (standard deviations) 
of participants age, height, and weight were 23 (2.5) 
years, 184 (6) cm, and 76.1 (6.3) kg, respectively.  
The experimental procedure was approved by the 
appropriate internal review board.    The study proto-
col was explained to each participant prior to the 
experiment.  The experiment took place after a par-
ticipant reviewed and signed the informed consent 
form and agreed to participate.  

2.2. Procedure 

Participants were asked to perform a variety of 
lifting tasks.  A box (width 55 cm, depth 35 cm, 
height 33 cm) was used in the experiment for the 
lifting tasks.  Weight was added to the box as neces-
sary to produce different loading conditions.  A mo-
tion tracking system (OptotrakTM, Northern Digital, 
Waterloo, Canada) with two arrays of three cameras 
was used to record the participant’s segment move-
ment data.  The capture rate was set at 100 samples 
per second.  The LED markers of the motion tracking 
system were attached to the center of sagittal plane 
projection of a participant’s major segments. The 
order of lifting conditions was randomized. The test-
ing conditions included two lifting techniques (stoop 
and squat), three lifting ranges (initial load position 

50, 250 and 550mm from ground), and six load 
weight levels (1.9, 6.8, 11.9, 16.9, 21.9 and 26.6 kg).  

2.3. Model and analysis 

A rigid link model with seven body segments (foot, 
shank, thigh, pelvis, trunk, upper arm and forearm) 
was adopted in this study.  For each participant, the 
segment movement data collected from the motion 
tracking system over the course of each lifting task 
were used to calculate the angular displacement-time 
trajectories of major segments based on this rigid link 
model.  The results of these calculations were re-
ferred to as the “measured” segment angle trajecto-
ries.  Two-point through ten-point equal time-spaced 
segment angles extracted from the above measured 
data were used to re-generate the whole body lifting 
motion using two interpolation algorithms: poly-
nomial and cubic spline.  The output results were 
referred to as “estimated” segment angle trajectories.  
The root mean square error (RMSE) between the 
measured and the estimated segment angle trajecto-
ries were calculated to examine the disagreement 
between the data calculated from the motion tracking 
system and the data generated by both interpolation 
methods.   

To analyze how the RMSE may change when the 
segment angles used for the input points of the inter-
polation algorithm deviated from the measured ones 
(to mimic the anticipated error when using a video 
posture coding method to estimate the key segment 
angles), a sensitivity analysis was performed. A ran-
dom number with a uniform distribution ranging 
within ±2.5º, ±5º, ±10º, and ±15º was added to the 
accurate interpolation points before the interpolation 
was performed. Then, the RMSE the of estimated 
segment angle trajectory was calculated for each 
segment angle. 

3. Results and discussion 

The RMSE of each segment angle decreased for 
both interpolation algorithms (Figure 1) when the 
number of interpolation points increased from 2 
points to 8 points. For 2-point to 4-point interpolation, 
the RMSEs were the same for the two interpolation 
algorithms. This was because cubic spline is a series 
of 3rd order polynomials which yields the same in-
terpolation when the number of interpolation point is 
less than 5. For 5-point to 10-point, the RMSE of the 
cubic spline interpolation was smaller than the 
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RMSE of the polynomial interpolation method. 
When the number of interpolation points exceeded 8, 
adding more interpolation points increased the 
RMSE for the polynomial interpolation algorithm. 
Overall, if a 4-point polynomial or cubic spline inter-
polation is applied, the RMSE can be maintained at 
less than 2 degrees for all segments. To achieve a 
precise estimation with RMSE values smaller than 
0.5 degree for all segment angles, a 7 or 8 points cu-
bic spline interpolation will be required. 
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Fig. 1. The root mean square error (RMSE) of each body segment 
with different interpolation algorithms and numbers of interpola-
tion points 

 
The results indicated that, while increasing the 

number of interpolation points in the cubic spline 
approach can reduce the RMSE of the estimated 
segment angle trajectories, the decrease of the RMSE 
appears to be non-linear. As the number of points 
increased, the improvement of adding points on in-
terpolation became smaller.  There was a diminishing 
advantage in continuing to add interpolation points 
beyond a certain number. The results also revealed 
that the cubic spline approach had better convergence 
than the polynomial on the estimation of segment 

angle trajectories.  With fewer than 8 interpolation 
points, the polynomial approach had similar results.  
However, its RMSE started to increase when the 
number of interpolation points was too high because 
of Runge’s phenomenon. 

Since cubic spline interpolation always had the 
same or better estimation on segment angle trajecto-
ries than polynomial interpolation, the sensitivity 
analysis was performed only with the cubic spline 
interpolation algorithm used.  The analysis results 
(Figure 2) showed that when a random error with 
uniform distribution ranging within ±5º was added to 
the interpolation points, the RMSE did not signifi-
cantly reduce with more than 5 interpolation points 
used. For the random error ranges at ±10º or ±15º, 
benefits for improving prediction accuracy by in-
creasing the number of interpolation points dimi-
nished. 
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Fig. 2. The root mean square error (RMSE) of each interpolated 
body segment angle when the sensitivity analysis imposed random 
errors on the identified interpolation points segment angles (to  
mimic the anticipated error when using a video posture coding 
method to estimate the key segment angles used for the input 
points of the interpolation algorithm) 
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The results of the sensitivity analysis also imply 
that, in order to accurately regenerate the segment 
angle trajectories when applying these interpolation 
approaches, the error on the segment angles at each 
interpolation point should be controlled to a low level. 
If the interpolation points considerably deviate from 
the real value (random errors up to 10 degrees or 
more), increasing the number of interpolation points 
may not necessarily help to improve estimation accu-
racy.  This should be particularly considered when 
the body segment angle is derived from posture ob-
servation since this method can introduce substantial 
perception errors [6]. Future research should focus on 
how to control perception errors of segment angles 
during posture observation. 

4. Conclusions 

With the use of interpolation algorithms, the seg-
ment angle trajectories during lifting tasks can be 
regenerated with data from only a few key body 
postures.  The results suggest that cubic spline inter-
polation provides a better estimation of segment an-
gle trajectories compared with polynomial interpola-
tion. To ensure a good trajectory estimate, the error 
of segment angle inputs due to the use of video post-
ure coding in each interpolation point needs to be 

controlled at a low level. With further research and 
improvement of current methods, it is possible to 
describe or assess lifting tasks when the use of com-
plex motion tracking systems is limited or unavaila-
ble due to practical considerations.  
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