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1. Introduction

Artificial Intelligence (AI) is the motor that fuels
the most profound revolution in the history of hu-
mankind. The new era of information society [10],
even called “the Fourth Revolution” [8], has produced
deep changes into sciences, economies, and societies
[9]. This revolution is not only about formal heuris-
tics, or the called “algorithmic society”, but also is
explicitly related to the creation of strong interac-
tions between humans and machines. Consequently,
these machines must be able to deal with the most
intrinsic feature of human nature: emotions. If emo-
tions had been historically considered as disturbing
elements of human rationality, the neurological revo-
lution and new experimental tools such as magnetic
scanning of the brain (with great success for fMRI)
made possible a complete Copernican turn into the
evaluation of the role of emotions in cognitive frame-
works [13,14]. This process led experts in natural and
artificial cognition to consider the necessity of includ-
ing emotions into their models [37]. Affective com-
puting or social robotics [7,44] increased not only
the necessity of studies about how to improve the
emotional interaction between humans and machines
[57,59] but also how to design cognitive architectures
which included biomimetic elements related with emo-
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tions [34,58]. The range of emotional aspects with fun-
damental interest for robot engineers and experts is
comprehensive: human–robot interaction, robot task-
planning, energy management, social robotics, body
design, care robotics, service robotics, among a very
long list [2,6,18,20,43]. Practically, there is no field
related to robotic and AI which is not directly or in-
directly related to the implementation of emotional
values. Moreover, embodiment [42] is not a manda-
tory aspect for considering such emotional elements,
because their role embraces fundamental mechanisms
of thinking, with a distinctive and relevant role in all
those things related with creativity and complex eval-
uations [12,19,41,53].

Hence, the research investments on emotional robo-
tics have turned from a particular and collateral as-
pect of robotics and AI studies, to occupy a funda-
mental and growing area among experts. Emotional
or Kansai designs are even becoming standard proce-
dures today [39]. At the same time, there is a huge de-
mand for social robots and intelligent systems, which
must also connect with the Internet of Things [3].
The challenges for the understanding, design and im-
plementation of artificial systems which use emo-
tional values for their multimodal and holistic (or gen-
eral) functioning is, consequently, one of the most
critical and fundamental aspects of contemporary re-
searches.
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2. Emotional artificial intelligence

In [37] Minsky claims that emotions are just dif-
ferent “ways to think” for addressing different prob-
lem types existing in the world, a mean the mind uses
to increase our intelligence. He eventually concludes
that there is no distinction between emotions and other
kinds of thinking. Besides this crucial intuition, the
fundamental problem of what is the role of emotions in
intelligent behaviour remains open. Whether emotions
are evolutionary artefacts or are learned from sociali-
sation and experience, they play the role of particular
heuristics, aimed at summarising, focusing and priori-
tising cognitive tasks. Let think for instance to the role
of pain for individual safety, happiness in reinforce-
ment learning, or behavioural responses in non-human
animals, e.g. freezing, fleeing, or fighting.

An excellent contribution to modelling emotions
came from neurophysiology, which has provided the
biological basis for identifying emotional categories.
As Barrett states in [4], emotions are socially con-
structed and have biological evidence.

The seminal works of Ekman on facial emotions
[17] has led to the classical model of the six basic cate-
gories: anger, disgust, fear, joy, sadness, and surprise,
where each real face is assumed to express a weighted
combination of such basic pure emotions. The Ekman
model, with extensions [16], is also applied to tex-
tual emotion recognition. Emotions are physical expe-
riences universal to all humans, and many other an-
imals. Many species can also experience and detect
cross-species emotions.

From the computational point of view, a straight-
forward solution to the task of recognising human-
generated emotions is the application of machine
learning techniques such as text Semantic Analysis,
Naïve Bayesian Networks, Support Vector Machines,
Hidden Markov Models and Fuzzy & Neural Net-
works, to various types of human input with emotional
labels [11,32,33,38,50].

The identification of the appropriate features of the
input data represents a challenge of increasing com-
plexity, as textual/visual data are massively acquired,
and personal devices include sensors which can pro-
vide data on physical evidence of emotions.

For instance, when extracting emotions from text,
e.g. from social network posts [22,36], the contextual
information is prevalent. Indeed, some words can be
very much emotionally charged by themselves [5,21,
23], but their detection is not sufficient since modi-
fiers and the preceding/following parts of the dialogue

significantly influence the resulting relevance and the
quality of the detected emotions. For example, an an-
swer given by the single word “yes” can convey dif-
ferent emotions, depending on the particular question
asked. Early approaches to speech management often
merely consist of generating a text transcript of the
speech and applying known text-based techniques. It
is apparent that a more accurate context should include
both textual and associated acoustic features, such as
tone, pauses, voice pitch and expressivity. The inclu-
sion of other non-verbalised features strongly rely on
image analysis for detecting facial macro/micro ex-
pressions [45], and video analysis for dynamic as-
pects of facial expressions, gestures recognition, ges-
ture pace/speed, body movements [27].

Another major problem with the supervised ma-
chine learning approach is to provide the right la-
belling. While providing supervised labelling of an-
imals, e.g., dogs, cats, cows appearing in an image
is, in most of the cases, a quite straightforward task,
the same cannot be done for labelling emotions in
faces, voices or behaviours, and assigning them a di-
mensional quantification [24]. Objective labelling is
cumbersome also when dealing with emotions in the
text [40]. Tools like WordNet-Affect, an extension to
WordNet, where affective concepts labels are attached
to affective words, is significantly affected by biases
introduced by supervising experts, and by the fact that
it does not adequately capture the contribution to emo-
tions given by the context [26]. Moreover, the emo-
tional models are far from being stable; the widely
accepted Ekman model itself has been subject to exten-
sions with the introduction of new emotions, and mul-
tidimensional models are preferred, but more difficult
to compute automatically.

A great opportunity is provided by physical sensors
embedded in personal handheld devices, which allow
detecting the real physiological evidence of emotion
manifestations (e.g., skin temperature/humidity, myo-
electrical and electrodermal activity, heartbeat, blood
pressure). From the algorithmic point of view, there
is an excellent interest in exploring unsupervised la-
belling approaches based on Neural Networks (NN),
in particular, Autoencoders and Convolutional NN
(CCN) [48]. The idea is that we somewhat renounce to
know, in analytical terms, what the real emotion model
is, provided that the model embedded in the trained
NN allows us to implement specific operations, such
as emotion recognition, computing distance and simi-
larity among emotions, triggering emotion and context
driven behaviour.
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Symmetric to the issue of recognition is emotion
synthesis, i.e. the generation of emotional affordances
by an intelligent agent. Emotional affordances are arte-
facts, i.e. sounds, colours, texts, gestures, behaviours,
produced as systems output, which can be percept by
an interacting (human) agent as carrying an emotional
meaning.

A great effort has been done in this respect, in
mimicking human surface behaviours by artificial syn-
thesised characters and avatars, having facial expres-
sions and expressive voice synthesis, as well as making
robots reproduce human-like gestures and body mo-
tion [57]. There are still a lot of open issues in design-
ing new affordances for non-human-like systems, for
instance we can wonder what kind of emotional af-
fordance can provide a vacuum cleaner robot follow-
ing or respecting his human user, or more simply what
kind of non-verbal emotional affordance a web inter-
face can dynamically provide, e.g. by changing colours
or shapes.

A crucial issue in managing emotion synthesis is
the decision process when to use those emotional af-
fordances in the interactive dialogue and which affor-
dances are more appropriate among alternative ones
[25] to the context and the individual user.

A major limitation of current emotion models is that
they mostly focus on identifying the basic component
emotions, and they tend to locate emotions in short or
minimal time intervals.

Future approaches will need to address the issue of
abstraction level in emotion models, i.e. to cope with
higher level emotional concepts which denote a com-
plex emotional and contextual state, e.g. moods [27],
which cannot be reduced merely to a vector of ba-
sic emotions, but they express more articulated rela-
tionships among emotions, behaviour and context. For
instance, an optimistic mood or attitude expresses a
temporary state of a subject which tends to privilege
certain emotions. Another related aspect worth of in-
vestigation is the notion of distribution of emotions
over time. In this case, higher-level emotional concepts
aim at summarising the emotional content of a series
of events, system responses and emotional affordance
dialogues with the user. For instance, looking to the
concept of user experience, as intended in the Human
Machine Interaction area, we notice that it is indeed
emotionally characterised. Often, a system-user expe-
rience can be described either as difficult, cool, excit-
ing, reliable, easy, boring, seamless, where these la-
bels summarise a unique dynamic distribution of user
emotions and systems emotional affordances over the

time, and their complex and articulated relationships.
The concept of emotional experience mostly relates to
time and behaviour, i.e. affordances dialogue, rather
than with regular events separated from their history
and temporal context.

Another exciting application regards collective emo-
tions, e.g. to model the level of activity of an ethnic
group, or estimating stress levels in pedestrian crowds.

3. Emotional robotic machines

As above argued, robots are expected to become
capable of perceiving others’ emotions, develop their
emotional state and manifest it. Arguably, the scenario
where the developments in emotional robots are be-
ginning to occur is home robotics, namely with those
robots that are entering our homes in the form of en-
tertainment robots (e.g. robotic animals or puppets)
[62] or companion robots (e.g. robots for the elderly)
[60] and possibly, also in the form of service providers
(e.g. vacuum cleaners) [51]. In all the above contexts,
the close and personal interaction with users makes
suitable the introduction of emotional components in
the robot design and implementation. In particular, the
robots that are designed for the children and the el-
derly, already embody several features of the emo-
tional design. Psychological studies show that for hu-
mans, the elderly and children in particular, robots
can impersonate missing or imaginary living subjects
[47]. In such circumstances, they attribute emotions
to them and develop emotions towards them, even in-
dependently of the specific emotional design. If this
offers another exciting design perspective for emo-
tional robots, on the other hand it raises basic ethical
questions on the principles that robot design should
respect. As a consequence, the design of emotional
robots should be highly intertwined with the ethics of
such robots [55].

A specific area of application of emotional design
is that of robots that interact with cognitively impaired
patients [56]. Under specific therapeutic guidelines, a
suitable design of emotional robots can have an im-
pact on the quality of life of the patients, as well as on
their rehabilitation [31,46]. Other applications, where
the emotional component can have a prominent role
are ad-hoc systems for training and education [49] (e.g.
dietary robots).

In the home robots, as above described, the man-
ifestation of emotions can be already successfully
achieved through multiple modalities, ranging from
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appearance to voice and gestures; however, the under-
standing of human emotions from facial expressions,
gesture, spoken language is still somewhat basic, due
to the limitations of the hardware, i.e. input sensors.

Other scenarios, where the analysis of human emo-
tions plays a key role, are provided by situations where
the human is handling a device that requires full con-
trol of emotions (e.g. teleoperating a rescue robot, a
drone, driving a car, controlling the motion of a sophis-
ticated industrial device). In particular, this issue is un-
dergoing a fast development in the automotive sector.
Systems that monitor the attentive and emotional state
of the driver [35] will be installed in cars, even before
they will be fully autonomous.

The above-sketched scenarios, where the develop-
ment of emotional robots is already taking place and
likely will be developed in the future, certainly do not
cover the whole spectrum of opportunities that arise
from the field of emotional robotics. They aim to show
that there are already significant impacts and that the
emotional sphere is a crucial element in the design of
the future generations of robots.

4. Emotional machines: The next revolution

Recent advances in Artificial Intelligence design,
Deep Learning techniques, human-friendly Robotics,
Cognitive Sciences, claim for a revision of the whole
field of Affective Computing and the approaches to the
retain of emotional machines. This special issue is de-
voted to the critical innovations that will pave the way
for the next advances in Affective Computing. With
the current implementations of AI and robotic sys-
tems in new human environments and tasks, the need
for a good understanding of the necessary emotional
mechanisms involved in such processes is of the ut-
most importance. The daily interactions between hu-
mans and smarter devices are increasing exponentially,
and the emotional attachments and relationships with
machines are fundamental for a reliable and fruitful in-
teraction.

Such considerations lead to the conclusion that the
right approach to the “Next Revolution” must be mul-
tidisciplinary.

In this special issue, we are proud to present some
particularly exciting contributions to such a view.

From a text-based affective computing point of
view, we present a simple sentiment analysis applied
in a novel language, introducing the first Dictionary
of Kazakh sentiment words [61]. For automated visual

face emotion recognition based on micro-expressions,
[29] proposes a CNN-based system to processing im-
ages streamed in real-time from a mobile device, aim-
ing at helping an impaired user who cannot recognize
emotions (e.g., for a visual or cognitive impairment),
or a user who has difficulties in expressing emotions
(e.g., due to a degenerative pathology), to be assisted.
Regarding emotions and attention, [28] presents an au-
diovisual model for emotion recognition by skin re-
sponse. A functional data analysis approach for emo-
tion labelling and annotation is proposed in [52], eval-
uating the variations in annotations across different
subjects and emotional stimuli, in order to detect spu-
rious/unexpected patterns, and developing strategies
in order to combine these subjective annotations into
a ground truth annotation effectively. Another article
[1], from the psychology side, can be applied -among
others- to the long-standing problem of annotations,
tackling the relationship among music, emotions and
moral judgement. A psychological approach applied to
emotional face recognition is proposed in [15] to track
humility from body, face and voice, applied experi-
mentally on politicians’ speeches. Regarding, finally,
collective emotions, we propose with [54] a model to
measure the level of activity of an ethnic group, and
with [30] a realistic model to estimate stress levels in
pedestrian crowds.
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