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Abstract.
BACKGROUND: Patients treated with immune checkpoint inhibitors (ICI) are at risk of adverse events (AEs) even though
not all patients will benefit. Serum tumor markers (STMs) are known to reflect tumor activity and might therefore be useful
to predict response, guide treatment decisions and thereby prevent AEs.
OBJECTIVE: This study aims to compare a range of prediction methods to predict non-response using multiple sequentially
measured STMs.
METHODS: Nine prediction models were compared to predict treatment non-response at 6-months (n = 412) using bi-weekly
CYFRA, CEA, CA-125, NSE, and SCC measurements determined in the first 6-weeks of therapy. All methods were applied
to six different biomarker combinations including two to five STMs. Model performance was assessed based on sensitivity,
while model training aimed at 95% specificity to ensure a low false-positive rate.
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RESULTS: In the validation cohort, boosting provided the highest sensitivity at a fixed specificity across most STM combi-
nations (12.9%–59.4%). Boosting applied to CYFRA and CEA achieved the highest sensitivity on the validation data while
maintaining a specificity >95%.

CONCLUSIONS: Non-response in NSCLC patients treated with ICIs can be predicted with a specificity >95% by combining

multiple sequentially measured STMs in a prediction model. Clinical use is subject to further external validation.

Keywords: NSCLC, immunotherapy, machine learning, artificial intelligence, biomarkers, serum tumor markers, response
prediction

1. Introduction

Immune checkpoint inhibitors with or without chemotherapy have become a standard first-line
treatment for advanced non-small cell lung cancer (NSCLC) patients without actionable oncogenic
mutations [1, 2]. Nonetheless, only up to 50% of patients show survival benefit while all patients treated
are at risk of immunotherapy-related adverse events (irAEs) [3, 4]. Therefore, optimizing non-response
prediction prior to therapy initiation or during early therapy phase may help to prevent exposing patients
to irAEs while not expecting benefit.

Since the introduction of immunotherapy, multiple biomarkers have been assessed for their value
in the upfront selection of patients most likely to benefit from immunotherapy, including PD-L1
expression, tumor mutational burden (TMB), radiomics, and exhaled breath analysis [3, 5–7]. Despite
efforts to find new and better biomarkers, PD-L1 expression remains the only biomarker currently
used to identify patients most likely to benefit from immunotherapy. While the upfront evaluation of
biomarkers might provide prognostic information, it does not provide information on actual tumor
response, and therefore upfront evaluation of biomarkers might be less sensitive in the prediction of
non-response.

Serum tumor markers (STM) such as carcinoembryonic antigen (CEA), cytokeratin 19 fragment
(CYFRA), and neuro specific enolase (NSE) are known to reflect tumor mass [8]. Lang et al. showed
that a decrease in STM levels between baseline and the first response assessment can be used to identify
NSCLC patients receiving single-agent immune checkpoint inhibitors (ICIs) with more favorable
outcomes [9].

Previous studies have shown that serum tumor markers can be used to predict non-response to
immunotherapy in NSCLC patients [10, 11]. However, these prediction models were developed using
a single STM measured over time, multiple STM measured at a single time point, or a summary
statistic (e.g., change between two measurements) [10–12]. While single longitudinally measured
STMs or multiple STMs measured at a single time point can be used to predict treatment non-
response, combining longitudinal STM measurements might provide more predictive information.
Therefore, this study aims to compare the accuracy of several analytic methods utilizing multiple
longitudinal STM measurements in the prediction of non-response in immunotherapy treated NSCLC
patients.

2. Methods

This study is based on a cohort of 412 NSCLC patients described in previous studies [11, 13].
Patients were treated with either nivolumab or pembrolizumab at the Netherlands Cancer Institute
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between March 2013 and September 2019. Retrospective collection of data was approved by the local
institutional review board and ethics committee (PTC NKI-AvL, NL45524.031.13). Blood samples
were provided prior to treatment initiation and bi-weekly thereafter as part of regular care. CYFRA,
CEA, CA125 and NSE were measured on a Cobas 6000 system (Roche) and SCC on a Kryptor system
(Thermo Fisher).

2.1. Model training

All models described in this study aimed to predict non-response at six months after treatment initia-
tion by combining sequential biomarker measurements obtained during the first six weeks of treatment.
A CT scan was made at six weeks, three months, and every three months thereafter to monitor disease
progression. In this study, non-response is defined as progressive disease by Response Evaluation Cri-
teria in Solid Tumors version 1.1 (RECIST), clinical progressive disease or death within six months
after treatment initiation [11, 14, 15]. The baseline measurement was defined as the measurement
taken between 7 days before and 1 day after treatment initiation. Other time points were defined as the
measurement taken closest to the intended measurement date according to the bi-weekly measurement
schedule, and taken one week before or after the intended date (e.g., a measurement for week six
should be taken between day 35 and 49 after treatment initiation, and the measurement taken closest
to day 42 is selected as the measurement for week six).

Nine prediction models, with varying levels of complexity and flexibility, were assessed in this
study: logistic regression (LR), quadratic discriminant analysis (QDA), least absolute shrinkage and
selection operator (LASSO), random forest (RF), bootstrap aggregating (bagging), boosting, arti-
ficial neural network (NN), support vector machine (SVM), and recurrent neural network (RNN).
All models combine sequential measurements from multiple serum tumor markers to estimate a
single probability of non-response per patient. All models except the RNN used the baseline mea-
surement, the measurement at week six, the absolute difference between baseline and week six,
and the relative difference between baseline and week six as input variables. The RNN used all
available measurements between baseline and week six based on interpolation. Here, a monotone
Hermite spline was fitted on log-transformed measurement data, and then seven data points were
extracted from the fitted spline with seven-day intervals. The interpolated data points were trans-
formed back using the exponential function. More details on model training and data requirements
are depicted in Table 1. All models were applied to six different STM combinations of two to five
STMs per combination. Since applying the models to all possible STM combinations (2∧5 = 32)
would be computationally unfeasible, a team of clinical experts was consulted to identify the
most promising combinations, which were: CYFRA/CEA, CYFRA/CEA/CA125, CYFRA/CEA/NSE,
CEA/CA125/NSE, CYFRA/CEA/CA125/NSE, and CYFRA/CEA/CA125/NSE/SCC. Patients were
excluded from the analysis depending on model-specific data requirements, i.e., a minimum number
of measurements in the six-week period, or missing data (Table 1).

2.2. Model evaluation

Patients were randomly assigned to a training (75%) and validation (25%) cohort. All models
included in this study provided a class probability as outcome. Since the primary aim of the mod-
els is to early cease treatment in those patients who do not respond to the treatment provided, thus
requiring a low false positive rate, the prediction threshold resulting in a specificity closest to 95% was
chosen for all further analyses. In case multiple thresholds resulted in equal specificity outcomes, the
threshold resulting in the highest sensitivity was chosen. The trained prediction models and thresholds



S272
F.A

.van
D

elftetal./C
om

paring
m

odeling
strategies

for
early

prediction
ofnon-response

Table 1

The data requirements, data transformations, and training procedures used per prediction model

Method Data requirement Data transformations Model training R packages
(Version)

Logistic regression Baseline and week
six measurement

1) Log transformation
2) Min-max normalization

No additional hyperparameters Stats (4.0.4)

Quadratic discriminant
analysis

5 fold cross validation, with accuracy as metric Caret (6.0.88)

Least absolute shrinkage
and selection operator

5 fold cross validation with grid search,
lambda sequence 10x (x from 10 to –3, by
0.0013).

Glmnet (4.1.1)

Random Forest NA 5 fold cross validation, with accuracy as
metric.

randomForest
(4.6.14), caret
(6.0.88)

Bootstrap aggregating Tune grid:
- Nodesize: 1 to 5
- Number of trees: 100 to 1000
- Maximum number of terminal nodes: 5 to 25

Boosting - 5 fold cross validation Gbm (2.1.8)
- Shrinkage = 0,001
- Number of trees = 5000
- Interaction depth: 2 to 15

Artificial neural network∗ 1) Log transformation
2) Min-max normalization

- Network structure: 3 dense layers with 32, 16,
and 1 unit respectively

Keras (2.4.0),
tensorflow
(2.4.4)- Dropout: 20%

- Regularizer L2: 0.01
- Validation split: 20%
- epochs: 500, select epoch with highest

validation accuracy
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Support vector machine - Cross validation: 5 fold, Caret (6.0.88)
- grid search:

- C (0.0001, 0.001, 0.01, 0.1, 1, 10, 100)
- Sigma (0.01 to 0.41, by 0.1)

Recurrent neural network∗ At least 3 available
STM measurements
including a baseline
and week six
measurement.

1) Log transfor-
mation

- Grid search: 2, 3, 6, 7 GRU
layers, layer size 16 to 300, select model

Keras
(2.4.0),

2) Fit monotone Hermite
spline

with highest pAUC.
- Dropout: 15%

Tensorflow
(2.4.0)

3) Extract 7 datapoints at
1 week intervals

- Recurrent dropout:
15%

4) Rescale data using the
exponential function
(y =ex)

- Optimizer: Adam
- Metric: accuracy

5) Log transformation
6) Min-max scaling

- Monitor: accuracy
- Validation split: 25%
- Epochs: 200 (select epoch with highest

accuracy)

Serum tumor marker: STM, gated recurrent unit: GRU, partial area under curve, pAUC. ∗For the artificial neural network it was possible to define a network structure that
provided a good performance across all STM combination, this was not possible for the recurrent neural network. Therefore, a grid search was used to select a network
structure for the recurrent neural network for each STM combination.
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were then applied to the validation cohort to evaluate and compare model performance. Therefore, mod-
els were compared on the maximum sensitivity for the number of persons exhibiting immunotherapy
non-response, given this 95% specificity requirement. Models were deemed useful when a sensitivity
of at least 20% is achieved while maintaining a 95% specificity [11]. While a specificity slightly less
than 95% may still be acceptable, models were deemed not useful when specificity dropped below
90%. Further analyses were performed to obtain a broader view of the model performance and gener-
alizability. First, the standardized partial area under curve (pAUC) was calculated for the section of the
receiver operating characteristics (ROC) curve ranging from 90% to 100% specificity [16]. Second,
the optimism was calculated for the best performing model, i.e., the model providing the highest sen-
sitivity on the training data [17]. To calculate the optimism, the model fit procedure was repeated on
1000 bootstrap samples. The sample size of the bootstrap samples was equal to 75% of the full patient
cohort, samples were drawn randomly with replacement. Last, a bootstrap procedure was performed to
assess the predictive accuracy of the models evaluated in this study. During this bootstrap procedure,
the model fit on the training cohort was applied to 1000 bootstrap samples. As opposed to the optimism
correction, models were not re-trained during this bootstrap procedure. The bootstrap samples were
drawn from the full patient cohort, samples were drawn with replacement and the sample size was
equal to 75% of the full patient cohort.

3. Results

3.1. Training and validation results

The accuracy of the different models applied to combinations of multiple longitudinal STM mea-
surements is depicted in Table 2. The highest sensitivity achieved on the training data was 82.3%,
using a boosting model applied to CYFRA, CEA, CA125, NSE, and SCC. For all STM combinations,
boosting provided the highest sensitivity on the training data. However, for the STM combination
of CYFRA, CEA, and NSE, bagging provided similar results. As indicated by the colored fields in
Table 2, on the training data, all model and STM combinations, except the LASSO model applied to
CEA, CA125, and NSE, are deemed useful since all sensitivity results exceed the set 20% sensitivity
threshold. On the validation data the boosting model provided the highest sensitivity on five of the six
STM combinations. The boosting model applied to all five STMs provided the highest sensitivity on
the validation data. However, the specificity decreased to 72.7%, a 21.9% drop in specificity compared
to the 94.6% achieved on the training data. The highest sensitivity on the validation data while main-
taining a minimum specificity of 95% was 59.4%, achieved using boosting with CYFRA and CEA as
input. In the validation, 48 out of the 54 model and STM combinations exceeded the 20% threshold.
However, for 17 combinations, the specificity dropped to <95%, and 8 of these combinations resulted
in a specificity <90%. Finally, 31 model and STM combinations were considered useful based on the
prespecified criteria [11].

3.2. Partial area under receiver operating characteristics curve

The pAUC for each method and STM combination are depicted in Table 3. The pAUC for the training
data ranged from 0.591 for the NN applied to CYFRA, CEA, and NSE, to 0.883 for the QDA applied to
all five STMs. The boosting model provided the highest pAUC for four of the six STM combinations.
On the validation data, the pAUC ranged from 0.568 for RNN applied to CYFRA, CEA, and NSE, to
0.871 for bagging applied to all five STMs. Full ROC curves for each STM combination are depicted
in supplementary materials, Figs. S1 to S6.
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Table 2

The training and validation results per method and serum tumor marker (STM) combination. The model providing the highest sensitivity per STM
combination is indicated by a black square. Model and STM combinations resulting in a sensitivity >20% and <30% and a specificity

>95% are marked yellow, combinations resulting in a sensitivity >30% and specificity >95% are marked green

Method 

Training data 

CYFRA / CEA CYFRA / CEA / CA125 CYFRA / CEA / NSE CEA / CA125 / NSE 
CYFRA / CEA / CA125 / 

NSE 
CYFRA / CEA / CA125 / 

NSE / SCC 
sensi vity specificity sensi vity specificity sensi vity specificity sensi vity specificity sensi vity specificity sensi vity specificity 

LR 0,316 0,949 0,362 0,944 0,254 0,945 0,279 0,955 0,221 0,955 0,595 0,946 
QDA 0,271 0,949 0,354 0,944 0,397 0,945 0,328 0,940 0,549 0,940 0,734 0,946 
LASSO 0,361 0,949 0,315 0,944 0,349 0,945 0,156 0,985 0,377 0,955 0,544 0,919 
RF 0,511 0,949 0,598 0,944 0,722 0,945 0,500 0,940 0,680 0,940 0,519 0,946 
Bagging 0,489 0,949 0,386 0,986 0,738 0,959 0,557 0,955 0,746 0,955 0,608 0,946 
Boos ng 0,624 0,949 0,614 0,944 0,738 0,945 0,746 0,955 0,779 0,955 0,823 0,946 
NN 0,383 0,949 0,457 0,958 0,373 0,945 0,230 0,955 0,303 0,955 0,418 0,946 
SVM 0,241 0,949 0,591 0,944 0,381 0,945 0,541 0,955 0,361 0,955 0,582 0,946 
RNN 0,437 0,951 0,381 0,949 0,557 0,951 0,572 0,949 0,559 0,949 0,487 0,944 

Method 

Valida on data 

CYFRA / CEA CYFRA / CEA / CA125 CYFRA / CEA / NSE CEA / CA125 / NSE 
CYFRA / CEA / CA125 / 

NSE 
CYFRA / CEA / CA125 / 

NSE / SCC 
sensi vity specificity sensi vity specificity sensi vity specificity sensi vity specificity sensi vity specificity sensi vity specificity 

LR 0,188 1,000 0,323 0,966 0,194 1,000 0,258 1,000 0,129 1,000 0,500 1,000 
QDA 0,188 0,966 0,258 0,966 0,387 1,000 0,258 1,000 0,452 0,964 0,688 0,455 
LASSO 0,375 1,000 0,258 1,000 0,387 1,000 0,129 1,000 0,387 1,000 0,500 1,000 
RF 0,500 0,966 0,484 0,931 0,613 0,929 0,323 0,964 0,484 0,929 0,438 1,000 
Bagging 0,500 0,966 0,290 0,966 0,548 0,929 0,387 0,893 0,516 0,929 0,500 1,000 
Boos ng 0,594 0,966 0,548 0,862 0,581 0,929 0,484 0,786 0,613 0,929 0,750 0,727 
NN 0,312 0,966 0,419 0,931 0,290 1,000 0,129 1,000 0,258 1,000 0,312 1,000 
SVM 0,312 0,966 0,323 0,966 0,355 1,000 0,258 0,857 0,387 1,000 0,250 1,000 
RNN 0,477 0,897 0,268 0,931 0,568 1,000 0,415 0,793 0,512 1,000 0,448 0,962 
Logis c regression: LR, Quadra c discriminant analysis: QDA, Least absolute shrinkage and selec on operator: LASSO, Random forest: RF, Neural network: NN, Support vector machine: SVM, 
Recurrent neural network: RNN, Gated recurrent unit: GRU.  
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Table 3

The partial area under receiver operating characteristics curve (pAUC) [specificity: 0.9–1]. A darker shade of yellow is used to indicate a higher pAUC,
and the black square indicates the highest pAUC per serum tumor marker combination
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3.3. Optimism correction

The optimism was calculated for the model providing the highest sensitivity on the training data,
i.e., boosting applied to CYFRA, CEA, CA125, and CEA. This boosting model achieved a sensitivity
and specificity of 82.3% and 94.6% on the training data, respectively. The average optimism was
7.7% (SD: 4.4%) and 10.7% (SD:6.1%) for the sensitivity and specificity, respectively. Resulting in
an optimism-corrected sensitivity of 70.7%, and an optimism-corrected specificity of 78.5%.

3.4. Model accuracy on bootstrap samples

Figure 1 depicts the sensitivity and specificity for all model and STM combinations for the train-
ing, validation, and bootstrap samples. Violin plots are used to depict the distribution of bootstrap
results. The highest average sensitivity on the bootstrap sample was 81.2%, and was achieved using
boosting with CYFRA, CEA, CA125, NSE, and SCC as input. The average specificity found for this
model and STM combination was 89.5%. Moreover, boosting models provided the highest sensitiv-
ity for all STM combinations. The average sensitivity and specificity for each model and biomarker
combination are depicted in Table S7 (supplementary materials). Additionally, the correlation and
covariance between the sensitivity and specificity are provided in Tables S8 and S9 (supplementary
materials).

4. Discussion

Combining multiple biomarkers measured over time into a single response measure is complex and,
to our knowledge, has not been previously applied to the prediction of immunotherapy response in
NSCLC patients. The best performing model applied to a combination of STMs presented in this study
reached a 59.4% sensitivity with a ≥95% specificity for predicting non-response at six months after
treatment (Table 2). Overall, the results from model training and validation indicate that a boosting
model performs best in this context, which is also supported by the pAUC outcomes on the training
data. However, the pAUC results found on the validation data show that LASSO, bagging, and RNN
might outperform the boosting models for some STM combinations (Table 3).

The best performing model found in this study was a boosting model using CYFRA, and CEA
as input. Increasing the number of STMs by adding CA125 and NSE did increase the sensitivity
of boosting on the validation data to 61.3%, however, the specificity dropped to 92.9% (Table 2).
The pAUC results on the training data also show that including more STMs in models results in
marginal gains in accuracy. On the training data RF, bagging, and boosting reach a pAUC >0.7 for
each STM combination. When looking at all methods considered, the gain in pAUC from adding
one more STM(s) to one of these models is marginal. For example, an average increase in pAUC of
0.021 and 0.046 was found when adding either CA125 or NSE as input, compared with using only
CYFRA and CEA as input, respectively (Table 3). While adding more STMs to the model might
increase the available information for prediction, adding additional variables to the model might also
introduce noise. Particularly, known benign causes of falsely elevated tumor marker concentrations
might be of influence here [18]. Although more flexible models can potentially extract more predictive
information from the data, the flexibility can also cause models to follow the noise too closely causing
the model to generalize poorly [19]. During model training, cross validation and dropout were used
when appropriate to avoid overfitting.
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Fig. 1. The sensitivity and specificity outcomes for the training, validation, and bootstrap per method and biomarker
combination.

Comparing the pAUC to the sensitivity and specificity results found on the training data shows that
both results align well, given that model and STM combinations resulting in a high sensitivity also
achieve a high pAUC (Tables 2 & 3). As shown in the results, boosting provided the highest sensitivity
for all STM combinations. Except for the STM combinations of CYFRA, CEA, and NSE and all
five STMs, boosting also provided the highest pAUC. However, on the validation data other models
achieved a higher pAUC on five out of the six STM combinations. Since the prediction threshold is
chosen such that 95% specificity is obtained on the training data, the sensitivity and specificity results
only reflect a single point on the ROC curve, while the pAUC is based on the 90% to 100% specificity
range of the ROC curve. From the pAUC results it is clear that, depending on the actual acceptable
specificity in clinical practice, multiple methods can have good predictive performance.
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The optimism-corrected performance was calculated to estimate the true performance of the best
performing model in an external cohort. This procedure was applied to boosting using all STMs as
input. The optimism correction shows a drop in specificity of 16.1% from 94.6% to 78.5%, while the
sensitivity dropped by 11.6% from 82.3% to 70.7%. This indicates that when applying the model to
an external cohort, the specificity is expected to drop more than the sensitivity. When comparing the
optimism-corrected performance to the results found on the validation data, similar specificity results
were found, i.e., 72.7% and 78.5% for the validation data and after optimism correction, respectively.
For the sensitivity the difference was even smaller. The sensitivity results on the validation data and
after optimism correction were 75.0% and 70.7%, respectively.

There are several limitations to this study. First, the LR, QDA, and LASSO models might be improved
by incorporating interaction terms. However, the number of variables would then increase rapidly
when incorporating more STMs. As inclusion of interaction terms would also require assumptions
about relationships between STMs, no interaction terms were included in this study. Second, while
an attempt was made to optimize the investigated models’ settings, it may still be possible to improve
the performance of models further. Last, the use of other summary measures of STM values could
potentially also result in improved performance. It would therefore be valuable to evaluate and include
more summary statistics when developing a prediction model.

In conclusion, this study shows how multiple sequentially measured STMs can be combined in a
prediction model to predict non-response in immunotherapy treated NSCLC patients. These models
may help guide immunotherapy decisions and identify the patients most likely to benefit from this
specific treatment. Overall, boosting provided the best model performance across all investigated
STM combinations and this model could potentially be used to discontinue treatment after six weeks
in almost two thirds of patients who will not benefit from treatment. The boosting model based on
CYFRA and CEA should be subject to external validation to assess its potential value in clinical use.
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