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Abstract. Organic acidemias and urea cycle disorders are ultra-rare inborn errors of metabolism characterized by episodic
acute decompensation, often associated with hyperammonemia, resulting in brain edema and encephalopathy. Retrospective
reports and translational studies suggest that N-carbamylglutamate (NCG) may be effective in reducing ammonia levels
during acute decompensation in two organic acidemias, propionic and methylmalonic acidemia (PA and MMA), and in two
urea cycle disorders, carbamylphosphate synthetase 1 and ornithine transcarbamylase deficiency (CPSD and OTCD). We
established the 9-site N-carbamylglutamate Consortium (NCGC) in order to conduct two randomized double-blind, placebo-
controlled trials of NCG in acute hyperammonemia of PA, MMA, CPSD and OTCD. Conducting clinical trials is challenging
in any disease, but poses unique barriers and risks in the ultra-rare disorders. As the number of clinical trials in orphan diseases
increases, evaluating the successes and opportunities for improvement in such trials is essential. We summarize herein the
design, methods, experiences, challenges and lessons from the NCGC-conducted trials.
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1. Introduction

Inborn errors of metabolism (IEMs) are rare genetic disorders caused by defects in enzymes, trans-
porters, or other functional proteins, resulting in blocks in a biochemical pathway. The pathophysiology
of these disorders typically derives from the accumulation of toxic substrates upstream of the block
or deficiency of essential products beyond the block. Although the collective incidence of all IEMs is
estimated to be as high as 1 in 800 births [1] virtually all individual IEMs are rare diseases, defined in
the US Code of Federal Regulations (CFR) as affecting fewer than 200,000 people (approximately 1 in
1600 Americans) [2] or in Europe, fewer than 1in 2,000 [3]. Although prevalence varies by population,
the frequency of most IEMs is so low that they meet the definition of ‘ultra-rare’, a concept which has
been proposed for diseases with a prevalence of less than 1:50,000 [4]. Ultra-rare disorders present
unique challenges for the conduct of randomized clinical trials.

Propionic acidemia (PA), methylmalonic acidemia (MMA), ornithine transcarbamylase deficiency
(OTCD), and carbamyl phosphate synthetase 1 deficiency (CPSD) are among many ultra-rare disorders
associated with elevated blood ammonia levels, or hyperammonemia (HA) [5], which may result in
brain edema causing encephalopathy during acute events and if untreated, could cause death. Even
with current therapies for acute hyperammonemia, long-term sequelae often include developmental
delays leading to intellectual and developmental disability [5].

In mammals, including humans, toxic ammonia is converted into urea via the urea cycle, a biochem-
ical pathway of which carbamyl phosphate synthetase 1 (CPS1) catalyzes the first and rate-limiting
step and ornithine transcarbamylase (OTC) catalyzes the second step [6]. For enzymatic activity, CPS1
requires an allosteric activator, N-acetylglutamate (NAG), which is produced by N-acetylglutamate
synthetase (NAGS). In the absence of NAG, CPS1 is catalytically inactive. Thus, a deficiency of the
NAGS, CPS1 or OTC enzyme results in reduced nitrogen flux through the urea cycle, causing HA [6].
In PA and MMA, the accumulated toxic substrates competitively inhibit the NAGS enzyme [7], thus
also causing HA.

N-carbamylglutamate (NCG), a stable analogue of N-acetylglutamate, is currently approved in both
the United States (US) and Europe for the treatment of NAGS deficiency. There have been retrospective
reports [8—11], pre-clinical experiments [7, 12], and translational studies [13], that suggest that NCG
may be effective in reducing ammonia levels during acute decompensation in PA, MMA, CPS1D, and
OTCD. However, none of these reports were based on randomized, controlled trials.

Six years ago, we initiated two studies to evaluate whether the addition of NCG to standard therapy
during acute HA 1) would result in improved neurocognitive outcomes; and 2) would more rapidly
reduce ammonia levels, improve function and shorten hospitalization relative to standard therapy alone.
The first study randomly assigned participants (all events per participant) to NCG or placebo; in the
second study, each separate HA event experienced by participants is randomized to NCG or placebo.
Both studies were investigator-initiated trials (IND 68,185), with no input from industry in their design
or conduct and were developed to primarily answer scientific questions. The study sites included nine
pediatric academic institutions in the US (Fig. 1), referred to collectively as the N-carbamylglutamate
Consortium (NCGC).

These studies were primarily funded through an RO1 award from the NIH National Institute of Child
Health and Human Development (HD058567), and cost-shared with philanthropic funds. Orphan
Europe, the only pharmaceutical distributor of NCG (Carbaglu) provided drug and placebo free-of-
charge. Once NIH funding ended, Orphan Europe committed to funding the study to completion.

Herein, we summarize the design, methods, experiences, challenges and lessons from the NCGC-
conducted trials, one of which is still in progress.
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Fig. 1. The N-Carbamylglutamate Consortium. Date each site joined shown in parentheses.

2. Methods

Two randomized double-blind, placebo-controlled studies with NCG were designed and launched
in 2012.

The first, “long-term neurocognitive outcome study” or LTO (Clinicaltrials.gov registry number:
NCTO01597440), focused on enrolling newly-diagnosed infants with PA and MMA, presenting with
HA at or less than 4 weeks of age. Enrollees were randomly assigned to receive NCG or placebo, in
addition to standard therapy, during all their hospitalizations for episodes of HA. Follow-up assessments
were scheduled for 9, 15, 21, and 30 months of age. Each of these assessments included the Bayley
Scales of Infant Development-Third Edition (all ages), Vineland Adaptive Behavior Scales (all ages),
and the MacArthur Inventory of Communicative Development, Second edition (all ages), and the Brief
Infant/Toddler Social Emotional Assessment at ages 15, 21, and 30 months.

The second, “short-term outcome” (STO) study (NCT01599286) focused on enrolling persons of
all ages with PA, MMA, CPSD or OTCD not eligible for the LTO and randomizing them to NCG vs
placebo added to standard care at hospitalizations for each separate HA event (Fig. 2). The primary
endpoint of the STO study was the difference in average trajectory of ammonia decline during events
receiving NCG vs. placebo. The secondary endpoints were based on change in clinical status during
the hospital course and time to hospital discharge (Fig. 2). The Functional Status Scale (FSS) [14],
ascertained pre-NCG and once daily thereafter, rated the patient’s functional status in 6 domains:
mental status, sensory, communication, motor, feeding, and respiratory functions. Each domain was
scored from normal (1) to very severe dysfunction (5) for potential score range from 6 to 30.

Drug/placebo assignments were block-randomized within study site but also controlled allocation
balance within each participant, so that participants would receive approximately an equal number of
assignments to either NCG or placebo over the course of multiple hospitalizations. This somewhat
complex randomization allowed both balancing allocations to treatment within the site as a whole
and balancing participant contributions to each treatment arm and resulting in multiple crossovers in
patients with multiple episodes of hyperammonemia. A defined wash-out period prevented otherwise
eligible participants from being randomized during any repeat hospitalizations falling within 7 days
of the last dose of a prior episode.
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Fig. 2. Schema of the Short-Term Outcome trial.

For both studies, the prescribed dose was 150 mg/kg/d or 3.3 g/m?/d if >15 kg, which was continued
for the earlier of 7 days or discharge. Per protocol, plasma ammonia levels were measured prior to NCG
administration, and at least every 12 hours during the first 48 hours and daily thereafter. In addition,
clinically-ordered ad hoc ammonia measurements were also captured, as well as any ad hoc plasma
amino acid profiles. Safety investigations included a complete blood count, serum liver enzymes, and
creatinine, and were obtained pre-NCG dosing and 2—4 days after the start of NCG. Electrocardiograms
(ECG) were added to the safety investigations following a recommendation by the FDA 3 years after
the studies had been opened for enrollment.

Children’s National was the lead site and coordinating center for the studies. Seven inaugural sites
in the N-carbamylglutamate Consortium (NCGC) were chosen mostly based on their ongoing collab-
oration as members of the Urea Cycle Disorders Consortium (UCDC) [15]. These included Boston
Children’s Hospital, Rainbow Babies & Children’s Hospital in Cleveland, Children’s Hospital Col-
orado, University of California Los Angeles Medical Center, Children’s Hospital of Philadelphia,
Lucille Packard’s Children’s Hospital Stanford, and Children’s National Health System in Washing-
ton, DC. This approach ensured that sites had the requisite expertise, experience, patient base and
established working relationship with the coordinating center at Children’s National. During study
design, each site provided information based on a review of records from the recent past, of numbers
of putatively eligible new patients and currently active patients as well as the expected frequency of
admissions with HA of the four study disorders. Based on these data, each participant was expected
to have an average of 4 HA admissions over the study period, which was used to estimate the study
sample size for both trials. Two additional sites were later added to increase enrollment: Mount Sinai
Health System in New York, and Children’s Hospital of Pittsburgh. Monthly calls with the principal
investigators and staff at each site provided an opportunity to discuss updates, changes to the protocol
and challenges in the conduct of the studies. Additionally, internal meetings of the study leadership
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and members of the coordinating center to discuss study progress were scheduled initially weekly, and
then twice monthly, once the lead site was open for enrollment.

These trials have made use of the Children’s Hospital Research Information System (CHRIS) [16].
CHRIS supported screening, enrollment, random allocation of episodes to treatment arms, protocol
management and form-based data collection. Challenges encountered with this platform forced a
switch to REDCap (Research Electronic Data Capture) [17] within the first year of opening the study
to enrollment.

All sites received IRB approval from their local IRB. The initial protocol submission as well as all
modifications were first approved at the lead site, followed by approval at all other sites. A Data and
Safety Monitoring Board (DSMB) was established that included a neurologist chair, an ethicist, two
neonatologists, and a biostatistician. Per protocol, meetings of the DSMB were scheduled every six
months to review participant safety as well as study progress and data completeness. Also per protocol,
an interim analysis was scheduled at the projected halfway point of the study (72 episodes in the STO).

Sample and effect sizes were estimated in PASS (Hintze, J. PASS 11. NCSS, LLC. Kaysville,
Utah, USA. www.ncss.com, 2011). Sample size projections were based on preliminary site reports,
2-tailed testing, 80% power, and assuming a type 1 error of 5% comparing timewise differences in the
trajectory of neuropsychological test scores in the LTO trial and in ammonia levels in the STO trial.
For the LTO study, site reports indicated the ability to collectively recruit and retain at least 34 PA
and MMA participants. Evaluating Bayley scores assessed at 2-3 times per participant (assumed to be
correlated at r =0.8), we estimated that randomly assigning 17 participants to each arm would allow
us to detect an effect size difference based on differences in the score trajectories between groups of at
least 0.9 standard deviations (SD). This minimum detectable effect size was considered realistic given
the severity of the projected insult in young participants and thus the potential for protection afforded
by NCG. For the STO study, we considered the projected 4-episode experience within participant with
random assignment to NCG+standard treatment (NCG-STD) vs. placebo+standard treatment (PLBO-
STD) per episode to be most closely equivalent to a crossover design and thus developed our estimates
based on this design and assumed a linear slope for the decline in ammonia. Accounting for gains in
efficiency associated with an average of 4 episodes per enrollee, a sample size of 36 participants (144
episodes, 72 per group) was estimated to provide 80% power to detect a difference in ammonia level
trajectories between groups of at least 0.6 SD. Based on recent experience at participating sites and on
preliminary results regarding the magnitude of the NCG effect, the sample size was considered feasible
and the projected effect was considered attainable if NCG proved to be effective. These numbers were
also considered adequate to assess secondary outcomes of safety and functional improvement leading
to earlier discharge. Sample and effect size estimates for the STO trial were also adjusted to include
error spending to accommodate a single interim analysis targeted for the halfway point of that study
(72 randomized episodes).

3. Results

From December, 2012 through April, 2015, we enrolled only 1 participant into the Long-Term
Outcome study. The study was therefore closed in May 2015, as it was determined that it was unlikely
to recruit sufficient participants to reach enrollment targets and produce a meaningful conclusion.

In the Short-Term Outcome study, among all sites, median time (range) from initial submission to
IRB approval was 68 days (range 25-164); from non-personnel amendment submission to approval
was 27 days (range 11.8-39.1) and from submission of continuing review to approval was 24.5 days
(range 16-54) (Table 1).
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Table 1
Days to IRB approval by site

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Site 8 Site 9 Median

Initial IRB 42 68 68 25 131 164 70 63 56 68
Amendment 39 25 31 12 32 19 N/A 18 29 27
Continuing Review 33 16 16 16 54 16 N/A 45 41 25
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Fig. 3. Study time line of the Short-Term Outcome trial. Initial IRB approval, study initiation visit, first enrollment and
first episode is shown for each site. Site 7 was initially discontinued from the study for lack of progress, but subsequently
re-activated.

A timeline of the STO study is shown in Fig. 3. IRB protocol applications at all other sites began
only after approval was obtained at the lead site. One site (Site 4) obtained IRB approval, but due to
insufficient screening and enrollment efforts, was first placed on probation and after lack of progress,
subsequently discontinued from the study. Reactivation was considered several years later, along with
a change in site-PI, and the site was ultimately reactivated approximately 5 years into the study.

As of July, 2018, 61 out of 123 patients who met full eligibility criteria were enrolled. 22 (36%) of
the 61 participants have dropped from the study, primarily due to liver transplantation. Figure 4 shows
cumulative enrollment of participants as well as randomized HA hospitalization episodes. Although
actual enrollment has exceeded projections, the active number of participants has plateaued since 2015
due to patient dropout. Accrual of study episodes has been relatively linear, with a slight increase
during winter months.

Time delay from initial qualifying ammonia level drawing until drug administration is shown in
Fig. 5. Median time from ammonia level until randomization was 2.4 hours (range 0 — 22.6). Median
time from randomization to drug administration was 3 hours (range: 0.2 — 31.2) (Fig. 5).

Plots of overall ammonia trajectory revealed that the decline was not linear. Instead, rates of ammonia
decline varied at least by day, tending to plateau by day 3 following randomization, creating the need
for piecewise regression models, which may vary by treatment group, to evaluate the hypothesized
difference in the ammonia decline by treatment group. This unanticipated level of complexity made
us reconsider the viability of the primary outcome.



N. Ah Mew et al. / Lessons from the N-Carbamylglutamate Consortium 163

65 1T Expected enroliment - [ 160
—e—— Actual enroliment
60 o [——— Expected Episodes
—a— Actual Episodes _ L 140
55 dropouts e
—— Effective Participants
50 120
45
» 40 100
£
a8
g 37 4
g Lao 2
L 30 2
5 w
o o
2 5 =]
25 4 F60 2
20
F4
15 - 0
10
20
s -
01 Fo

12112 06113 1213 06/14 12114 06115 1215 0616 12116 0617 1217 0618 12118
Time

Fig. 4. Cumulative Enrollment, Episodes and Dropouts of the Short-Term Outcome trial.
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Fig. 5. Time between initial ammonia draw, randomization and first administration of study drug for all episodes.

The high variability in ammonia decline by day prompted us to choose an alternative composite
primary outcome and modeling strategy., The composite outcome was time to reach an ammonia
level of 50 wmol/L or time to discharge, whichever occurred first and therefore the analysis approach
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used was a Cox regression model, which was simpler and required fewer assumptions. This change
unburdens the primary outcome of serious modeling complexity while using a well-defined and more
clinically-relevant outcome for comparison of treatment effects. The choice of 50 pmol/L as the target
for ammonia decline was based on the extensive experience of metabolic physicians that a patient
reaching this level of ammonia is no longer at risk of acute hyperammonemic injury and would be
a candidate for discharge in the absence of other complications. The original primary outcome of
difference in ammonia trajectory was retained as a secondary outcome.

This change required re-evaluation of the adequacy of the study sample size to ensure at least 80%
power to test the hazard ratio (HR) reflecting the difference by treatment group. Using the Cox Regres-
sion procedure in PASS we found that total sample sizes of 146, 114, and 93 episodes were sufficient
to detect HR estimates of 1.6, 1.7, 1.8 and 1.9, respectively. The change allowed us to detect realistic
and clinically meaningful differences at sample sizes smaller than our original projection resulting in
a new target of 114 episodes after accounting for error spending associated with one interim analysis.

4. Discussion

Studies of ultra-rare disorders face more challenges than those that merely meet the prevalence
criteria for ‘rare disease’. The ultra-rare frequency of urea cycle disorders and organic acidemias
impacted every aspect of the study, from recruitment, to regulatory compliance and protocol adherence,
and importantly to the rate of accrual of eligible patient episodes.

In a hypothetical city with a population of 1 million, there would be approximately 650 affected with
a disorder meeting the minimum CFR prevalence definition of ‘rare’. In contrast, there would only be
20 or fewer affected with a disorder meeting the proposed definition of ‘ultra-rare’ (1:50,000). The
prevalence for PA, MMA, CPS1, and OTCD each meet this criterion, as their estimated birth incidences
are all less than 1:100,000 live births [18-21], and many die in childhood. Additional eligibility criteria
further reduce the number of prospective participants, not all of whom are willing to participate in
clinical research. Each large academic institution joining the study would be expected to only add a
small number of eligible participants. As a result, in our study, in 2014 when cumulative episodes
continued to lag behind projections (Fig. 4), there was no choice but to add additional sites to the study
in the hope of increasing enrollment and episodes. Recruitment may in fact be so challenging in the
ultra-rare environment that in some studies, the number of sites exceeds the target number of enrolled
participants (e.g., NCT02991144).

The extremely low incidence of ultra-rare disorders can add significant variability resulting in the
study unfortunately hitting a recruitment ‘drought’. In the 3 years during which the LTO study was
open, only 1 infant meeting eligibility criteria was born at all study sites. This was far fewer than
historical numbers had predicted, and far fewer than have been born following closure of the LTO
study. In the STO protocol, between the time that sites reported their potential subject numbers and
the time that regulatory approval allowed recruitment, many of the most severely affected patients
(and thus most likely to have eligible episodes of HA) either died or underwent liver transplantation.
This loss of potential subjects, along with the natural variability of birth of additional eligible patients,
combined to greatly slow accrual of episodes. Although neither could be considered unexpected, the
time lag between conceptualization and planning of the study, and the beginning of enrollment, created
a significant barrier to accrual.

Regulatory requirements in rare and more common disorders are similar, thereby creating a much
higher ratio of administrative “overhead” effort-per-enrollee in rare disorders, whereas studies of
common disorders benefit from economies of scale. It was also difficult to benefit from prior experience
with study procedures. Hyperammonemia episodes happened so infrequently that study personnel
would essentially have to re-learn the protocol details with every new episode.
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4.1. Site selection

Capitalizing on an existing network infrastructure can facilitate the establishment of a new clinical
trial. In this study, 8 of 9 sites are members of the UCDC within the NIH Rare Disorders Clinical
Research Network. These sites not only had an established working relationship with the lead site,
Children’s National, but also had the requisite experienced personnel and facilities to conduct this
acute intervention trial. Similarly, the Children’s Oncology Group (COG) maintains numerous active
sites in the US and internationally, providing a source of centers equipped to launch trials of novel
cancer therapies. In retrospect, the need for tighter timelines and the fact that most centers could enroll
no more than a few subjects with any ultra-rare disorder, suggest that the reliance on a, geographically
broad, consortium of referral centers for ultra-rare disease clinical trial centers would facilitate timely
deployment of new protocols. Given their existing interests in rare disease, the consortia of the Rare
Diseases Clinical Research Network may be ideally suited to serving as such clinical trial centers.

4.2. Protocol development and regulatory issues

We were aware that it was essential to start protocol development early and thus drew on prior
experience based on establishing the Longitudinal Study of the UCDC, which took over 2 years
to enroll its first participant. Protocol development for the studies described herein started nearly
a year before NIH funding was secured and an initial draft was completed 8 months before NIH
funding was started. This allowed us to enroll our first participant within 9 months of the funding
start date.

With activation prior to the NIH-issued regulations regarding IRB reliance agreements, the studies
did not use a central IRB; instead, each site required individual IRB approval. As a result, site initiation
was set back nearly a year due to the need to first have the final protocol approved at the lead site delaying
application and approval at all other sites. Each site was also responsible for individually processing
amendments and managing regulatory training of study staff. All protocol amendments were first
drafted and approved at the Children’s National Coordinating Center before being distributed to other
sites. In practice, this two-step process meant that sites were not always operating on the same protocol
version.

The use of a central IRB of record would likely have expedited activation of all sites, and eliminated
the complexities of having various sites operating under different versions of the protocol. The recent
National Institutes of Health Policy, mandating the use of a single IRB for multi-site NIH-funded
studies, has now made the use of a central IRB common. Harmonization of this policy across other
sources of federal funding, such as the Patient-Centered Outcomes Research Institute (PCORI) and
the FDA may help to further reduce regulatory burden and decrease delays in activation of multi-site
studies.

Median time from initial IRB application until final IRB approval (68 days; Table 1) was in fact
longer than prior published mean times in interventional trials (38-42 days [22-24]). Although in some
cases, this length of time was increased due to personnel turnover, it may also highlight the difficulties
that Institutional Review Boards have with understanding rare genetic disorders which they may not
have previously encountered.

4.3. Study Design

In rare disorders, scientific evidence-based practice is weak. Although treatment guidelines have
been published, there is no agreed-upon standard of care for acute management of these disorders
[25-27], and management varies greatly between metabolic centers. Although perhaps semantic, the
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term ‘standard care’ was instead employed, and essentially describes that each center was to utilize
its routine management approach to treat acute hyperammonemia in addition to the trial’s random
drug assignment. The multiple balanced crossover design will greatly reduce any bias introduced by
differences in management between centers.

One issue of debate was the use of ammonia scavenging medications to treat acute hyperammonemia
in PA and MMA. These medications were approved for use in UCDs, but would be considered ‘off-
label” investigational treatment of organic acidemias. In the organic acidemias, these medications may
even have adverse effects. Phenylacetate or its derivatives are the ammonia scavengers of choice in the
US. These medications can deplete the glutamine/glutamate pool in patients who have low glutamine
levels and who may rely on these stores for anaplerosis of the TCA cycle [25]. Additionally, use
of ammonia scavengers may deplete the already diminished pool of free Coenzyme-A, potentially
worsening the mitochondrial dysfunction and the acidosis in the organic acidemias [28]. Inconsistent
use of ammonia scavengers between sites or even within a site would also introduce a serious statistical
and regulatory confounder. Therefore, ammonia scavenging medications were not permitted to be used
in the protocol for PA and MMA, and all participating sites agreed to avoid ammonia scavenger use
in patients with organic acidemia enrolled in these trials.

It is important that industry has had no role in study design or oversight. Orphan Europe committed
to provide study drug and placebo for the study, and neither Recordati, nor its subsidiaries Recordati
Rare Diseases, or Orphan Europe, the distributor of N-carbamylglutamate (Carbaglu), had any other
role. The company also has committed to provide funding to complete the study when NIH funding
ended. Nevertheless, the company remains at arm’s length from study conduct and direction and will
have no role in the analysis or interpretation of results. Instead, the study team intends to publish
our results in the public peer-reviewed literature, which Orphan Europe may then use as additional
supportive data if they seek expansion of Carbaglu’s current indication.

As the primary purpose of our clinical trials was scientific rather than regulatory, the study team did
not meet with the FDA review divisions prior to initiation of the study. However, 3 years after subjects
had been enrolled into the study, the study team was made aware that cardiac safety data might be
important for regulatory approval of any new drug or indication. Given that it is exceedingly unlikely
that a separate placebo-controlled RCT would be initiated for the regulatory approval of Carbaglu in
acute hyperammonemia, we opted to include pre- and post-drug EKGs as a safety measure for this
study. In retrospect, even in the absence of primary regulatory objectives for this study, consultation
with the FDA during the planning phase of the study may have obviated the need for a late change to
the study safety measures.

There are few validated measures of clinical benefit, and none which apply to children with
intoxication-type inherited metabolic disorders. We therefore pioneered the use of the Functional
Status Score (FSS) in this study, which was originally designed for the critical-care patient population,
and thus not ideally tailored to our patients. For instance, in general, affected participants do not have
lung parenchymal involvement; therefore, participants are virtually always on room air, unless they
require intubation for decreased mental status. This study, therefore typically only utilizes a narrow
range of FSS. Additionally, in other categories such as mental status or feeding, the category seems
insufficiently detailed to provide a refined categorization of their status.

4.4. Patient advocacy organizations

The support of patient advocacy organizations is critical to the success of any clinical trial in rare
diseases. The National Urea Cycle Disorders Foundation, Organic Acidemia Foundation, and Propionic
Acidemia Association are among the most active rare disease patient advocacy organizations. Our study
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team was invited to present and recruit at each of their annual meetings and successful recruitment and
conduct of this study would not be possible without the strong support of these organizations.

4.5. Participant enrollment

As the number of affected patients with these particular ultra-rare diseases is low, any reduction
in enrollment or missed episodes has profound and serious impact on the study. For instance, liver
transplant performed in participants greatly impacted our active participant numbers since participants
become ineligible once transplanted (Fig. 4).

Concurrent studies which compete for the same limited pool of participants may potentially result in
recruitment failures for all studies. It also creates logistic and ethical issues regarding which studies are
initially offered to patients. Each institution needed to determine a policy for resolving such issues, and
in some situations individual investigators in the same institution might have different approaches. At
Children’s National, for example, there was an industry-sponsored study and an investigator-initiated
study, both offering a novel therapeutic. This created a conflict regarding study choice, as there was
some overlap in participant eligibility. To alleviate this conflict, we ultimately developed a policy to
first offer enrollment in the NIH-funded NCGC study, given the institutional commitment based on
receiving federal funding.

Off-label prescription of the NCG also reduced availability of participants. Based only on anecdotal
evidence of NCG efficacy in study disorders, some otherwise eligible patients were already prescribed
chronic daily doses of the drug, thereby making them ineligible for our study. Desire in the medi-
cal community to offer new treatments when the list of approved options is limited, pressure from
patients [29] to receive new therapies, coupled with seeking out physicians willing to prescribe novel
therapeutics ‘off-label’, all contribute to this problem.

Enrollment was typically performed during routine outpatient clinic visits, which required the site
physicians to be aware of the study and to remember to refer their patients to the site PI. Despite
prioritizing enrollment in eligible patients not in crisis, occasionally, the opportunity was missed owing
primarily to the focus on clinical care during long outpatient clinic visits in patients with complex multi-
system disorders. Enrollment during non-crisis situations was preferred over approaching patients in
crisis during a hyperammonemic episode, which would not only prolong the time to randomization, but
also made recruitment more difficult because of the perceived coercive component when the prospective
participant was critically ill. These issues contributed to the problem that anticipated episode numbers
were higher than actual. In addition, reduced incidence of HA as patients age and become more stable
over time, as well as increased use of liver transplantation, notably decreased the number of eligible
participants.

4.6. Episode capture

These disorders are rare, and the occurrence of hospitalizations for hyperammonemia is infrequent.
Consequently, establishing a commonly accessible working document which outlines the workflow was
helpful to facilitate the capturing of an episode. Our experience suggests that the most hospitalizations
for hyperammonemia occur on evenings or weekends, rather than during typical work-week hours.
This introduces an additional logistical challenge as the study personnel (e.g., physicians, coordinators,
pharmacists) must be available and ready at any time for a very low-likelihood, yet highly stressful,
urgent, and time-consuming event. We also observed that even the largest metabolic centers have
limited investigational pharmacy coverage during off-hours.

Most episodes were identified when a participant arrived to the emergency department (ED). Families
were instructed to inform hospital staff that they were enrolled in a research study. Additionally,
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participants were provided with wallet-sized ‘notification cards’ during enrollment, which indicated
how to reach study personnel. However, this strategy rarely resulted in the alerting of study staff, as
participants either forgot to bring their notification card, or failed to alert ER staff. Some, but not all,
study sites have alerts embedded within their electronic health record systems that notify personnel that
a presenting patient is enrolled in a research study. Nevertheless, no system is perfect and thus the study
relies heavily upon a sequence of actions when an enrolled study participant presents with criteria for
an eligible episode. The ED alerts the on-call metabolic physician. If the on-call metabolic physician
is not a study investigator, he/she alerts study personnel either before or after a qualifying ammonia
level has been determined. Unless the patient is already enrolled, study personnel must consent and
enroll the participant at that time. The study investigator must verify that the participant’s episode meets
eligibility criteria and randomize the participant using the online portal (REDCap). The investigational
pharmacy must then be informed to prepare study drug based on the random assignment. Off-hours, this
may require the on-call unblinded investigational pharmacist to instruct an on-site inpatient pharmacist
how to interpret the coded random assignment and access the appropriate study drug. Each site has
its own process for ensuring this is done in a timely manner. Once the study drug is prepared, it must
be brought to the participant’s bedside maintaining chain-of-custody and validated by signature (i.e.,
cannot be sent via pneumatic tube). This often requires the participant’s ED nurse or investigator to
retrieve the medication from the inpatient pharmacy.

This sequence of events not only impacts whether the participant is enrolled and how quickly, but also
time to the participant receiving study drug (Fig. 5). Each person involved in this sequence potentially
adds delays to the process. Episode eligibility is dependent on a clinical laboratory ammonia result,
which is highly prone to pre-analytical error, frequently questioned, requiring a request for a repeat
sample.

4.7. Statistical challenges and considerations

Because of the lag in episodes, the interim analysis was delayed well beyond the scheduled (calendar)
halfway point of the study. Concern mounted that delaying the interim analysis until 72 episodes had
been randomized posed a fairness problem for enrollees, especially if the study needed to be stopped
due to futility. It was decided therefore, to conduct the interim analysis at the point when 60 episodes
were accrued. After the review of the report and the interim analysis, the DSMB voted to continue the
trial, which remains in process.

4.8. Financial considerations

This study was funded primarily through an NIH RO1 grant award; however, it would not have been
possible without cost sharing involving supplementary philanthropic funds. Even then, for this study
to reach completion, we have received additional funding from Recordati Rare Disease. Although this
phase II/III study will be completed at a fraction of the cost of an equivalent industry-sponsored trial,
these costs are still considerable and probably prohibitive for investigator-initiated trials for ultra-rare
disorders. Given the fixed start-up costs at each site, clinical trials in ultra-rare diseases bear a very
high cost per enrolled participant. Additionally, because the actual yearly enrollment numbers for such
ultra-rare disease studies are small, the start-up effort much exceeds the efforts needed to maintain the
study, and therefore this was reflected in the yearly effort compensation. This point suggests strongly
that meaningful evidence based medicine in ultra-rare diseases will require the development of pre-
existing clinical research networks, with robust data collection mechanisms and integrated regulatory
management systems, and with tight control of overhead cost. Such a structure would greatly benefit
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patients and patient care, healthcare payers, and industry partners, as has been seen in the field of
childhood cancer.

4.9. Single points of failure

This study has had multiple potential points of failure. As a result, it is extremely important to have
(preferably multiple) motivated study coordinators and investigators, who are committed to overcoming
inevitable breakdowns. Ideally, having someone ‘on call’ for the study (i.e., reachable at any time)
allows for the highest chance of successful capturing of episodes. A member of the Coordinating
Center carries a beeper and is available to assist sites when questions or challenges arise.

The utilization of a home-grown study information system, the Children’s Hospital Research Infor-
mation System (CHRIS), to support randomization and data capture was tailored to this study. It was
easy to make changes in and had customizable functionality. However, when the lead programmer for
this system was incapacitated, we quickly needed to find another solution. REDCap, a commonly used
research data capture system, was then implemented, which while customizable, was not perfectly
tailored to this study. It required custom changes to support the multiple crossover function, as well as,
to address other challenges imposed by this unique application. REDCap is still not infallible: when
there is a network failure or update, there needs to be a back-up system in place to cover enrollment
during off-hours. In addition, we assigned an on-call person and later back-up on-call persons with
access to randomization charts to provide the coded drug/placebo assignment by telephone.

4.10. Motivation of study members

In addition to providing ample effort compensation for both primary investigator and study coordina-
tor, this study offered generous compensation for capturing episodes. However, this remuneration was
insufficient to ensure capturing of all possible episodes, as retrospective review identified a number of
episodes that were missed. The threat of probation also did not improve site performance by those sites
unable to capture episodes. Instead, face-to-face engagement proved to be the single most important
motivating factor. There was a distinct uptick in study enrollment and episode capture immediately
following annual in-person meetings of the NCGC that was far greater than the limited impact of
monthly phone calls with sites.
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