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Abstract.

BACKGROUND: Cardiovascular diseases (CVDs) are the leading global cause of mortality, necessitating advanced diagnostic
tools for early detection. The electrocardiogram (ECG) is pivotal in diagnosing cardiac abnormalities due to its non-invasive
nature.

OBJECTIVE: This study aims to propose a novel approach for ECG signal classification, addressing the challenges posed by
the complexity of ECG signals associated with various diseases.

METHODS: Our method integrates Discrete Wavelet Transform (DWT) for feature extraction, capturing salient features of
cardiovascular diseases. Subsequently, the gcForest model is employed for efficient classification. The approach is tested on the
MIT-BIH Arrhythmia Database.

RESULTS: The proposed method demonstrates promising results on the MIT-BIH Arrhythmia Database, achieving a test
accuracy of 98.55%, recall of 98.48%, precision of 98.44%, and an F1 score of 98.46%. Additionally, the model exhibits
robustness and low sensitivity to hyper-parameters.

CONCLUSION: The combined use of DWT and the gcForest model proves eftective in ECG signal classification, showcasing
high accuracy and reliability. This approach holds potential for improving early detection of cardiovascular diseases, contributing
to enhanced cardiac healthcare.
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1. Introduction

In modern society, cardiovascular diseases (CVDs) such as heart failure and myocardial infarction
have been the leading causes of death globally [1]. As electrocardiogram (ECG) can reflect the electrical
activities of heart, meanwhile, is a non-invasive technique, and it has been widely used in detecting and
diagnosing cardiovascular abnormalities. However, the ECG signals of many diseases are complex and
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Fig. 1. Overall process of the DWT-gcforest model.

challenging to identify, causing a growing demand for ECG classification with high accuracy and high
reliability [2].

Several methods have been proposed to classify ECG signals and detect abnormalities. In traditional
machine learning, researchers utilize Hermit polynomial features [3], Hjorth descriptor and Principal
component analysis (PCA), etc. to extract the features of ECG signals. Meanwhile, Support Vector
Machine (SVM), Random Forest (RF), Decision Tree (DT), etc. are used in classification. On the other
hand, deep learning methods are utilized in this field, such as Long Short-Term Memory (LSTM) and
Convolutional Neural Networks (CNN).

In this paper, we introduce a novel and effective method for ECG signal classification. Utilizing the
Discrete Wavelet Transform (DWT), we extract the salient features indicative of cardiovascular diseases.
Subsequently, we use the gcForest model, initially introduced by Zhi-Hua Zhou et al. [4] in 2017 to
attain optimal classification outcomes. The method we developed has been trained and assessed using the
MIT-BIH Arrhythmia Database [5], demonstrating a high accuracy of 98.55% on the test set. The overall
process of our proposed model is shown in Fig. 1.

2. Dataset

For the evaluation of our proposed method’s performance, the MIT-BIH Arrhythmia Database was
utilized in this research. The MIT-BIH Arrhythmia Database serves as the inaugural standard benchmark
for evaluating arrhythmia detectors and has been utilized both for detector assessment and fundamental
cardiac research. The dataset is available at PhysioNet and it consists of 48 types of recordings. Each
recording is sampled at 360 Hz with a 30-minute duration and it has an annotation file which is identified
by experts. Meanwhile, the classification of arrhythmia types is delineated by the American Association
of Medical Instrumentation (AAMI), providing a structured framework for categorization. In this context,
we concentrate solely on the five pivotal arrhythmia groups sourced from the MIT-BIH database, as
delineated in Table 1.
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Table 1
Five major groups in the MIT-BIH Arrhythmia Database
Group Class
N Normal beat

Atrial escape beat

Nodal premature escape beat

Left bundle brunch block beat

Right bundle brunch block beat
F Fusion of ventricular and normal beat
S Supra-ventricular premature beat

Atrial premature beat

Nodal premature beat

Aberrated atrial premature beat

v Ventricular escape beat

Premature ventricular contraction beat
Q Paced beat

Unclassifiable

Fusion of paced and normal beat

3. Methodology

In this section, we present an in-depth overview of the feature extraction process utilizing Discrete
Wavelet Transform (DWT) [6], along with the multi-class classification technique using gcForest.
Meanwhile, a thorough exposition of the proposed model is presented.

3.1. Discrete Wavelet Transform

Wavelet transform can comprehensively extract both the time-domain and frequency-domain charac-
teristics of a signal, enabling a holistic representation of the original signal. Contrary to the Short Time
Fourier Transform (STFT) [7] which analyzes signals at a fixed resolution, the wavelet transform is more
adept at analyzing time-varying and non-stationary signals such as ECG. Consequently, numerous studies
utilize wavelet transform techniques for feature extraction from ECG or denoising ECG signals.

Wavelet transform is categorized into Continuous Wavelet Transform (CWT) [8] and Discrete Wavelet
Transform (DWT), serving as a fundamental tool in signal processing. In real-world EEG signal ac-
quisition, signals are typically discrete. Moreover, the computational overhead of utilizing all wavelet
coefficients by CWT is considerable. Thus, it is adequate to select a discrete subset of child wavelets to
effectively reconstruct a signal from its corresponding wavelet coefficients. In this paper, we utilize the
DWT method for feature extraction of ECG signals.

The wavelet transform theory is grounded on a function known as the mother wavelet v(t), and it
satisfies the property below:

[ wtvar=o (1)

Child wavelets are dilated by a factor of a and shifted by a factor of b. In the discrete wavelet transform,
we ensure that the pair (a, b) consists of discrete values, hence the corresponding wavelet is represented

as:
1 t—nban}z)
mnll) = (2)
) = (0
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Fig. 2. Illustration of feature extraction structure.

Where ag denotes the scale parameter, by denotes the translation parameter. Additionally, both m and
n are integers belonging to the set Z.
Given the discrete ECG signal f(k), the general equation for the DWT signal is define as:

1 k — nbgal®

s 2o ()
k

In practical applications, the fast Discrete Wavelet Transform (DWT) algorithm proposed by Mallat [9]
is frequently utilized. This algorithm effectively decomposes an ECG signal into two distinct sub-bands:
the low-frequency sub-bands, known as approximation coefficients (cA), and the high-frequency sub-
bands, known as detail coefficients (cD). Moreover, fast DWT contains down-sampling by a factor of
2. When an origin signal passes through two filters, the signal is decomposed into a high-frequency
component cD1 and a low-frequency component cA1. This process is termed as a decomposition of level
1. During the decomposition of level 2, cA1 is further decomposed into low-frequency component cA2 and
high-frequency component cD2. Consequently, the outputs are cD1, cD2, and cA2. The decomposition
formula is defined as follows:

cAilk] = (eDij1[klgl—n + 2k] + cAi 1 [k]h[—n + 2k]) 4)
k

Where g[-] represents high-pass filter and h[-] represents low-pass filter. Based on the theory, a schematic
illustration of the feature extraction for ECG signals utilizing the fast DWT is illustrated in Fig. 2.

DWT(k) = 3)

3.2. GcForest

The gcForest model was proposed by Zhi-Hua Zhou et al. [4] in 2017 as a collection of non-
differentiable modules, characterizing an ensemble of ensembles approach that necessitates fewer
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hyper-parameters compared to deep neural networks. This implies a significant reduction in model
complexity, which in turn lowers computational demands. Notably, the gcForest demonstrates commend-
able robustness concerning hyper-parameters. Moreover, the gcForest architecture incorporates a Cascade
Forest structure for deriving the final classification and employs a procedure known as Multi-Grained
Scanning to enhance the representation of data [10]. In this section, we will delineate both the Cascade
Forest structure and the Multi-Grained Scanning mechanism.

3.2.1. Cascade forest structure

Inspired by the processing of raw features in Deep Neural Networks, the gcForest model adopts a
cascade structure to enhance its analytical capabilities. This structure is comprised of numerous layers,
each of which constitutes an ensemble of decision tree forests. Since the gcForest model represents an
ensemble of these layers, it is also referred to as an ensemble of ensembles. The structure is shown in
Fig. 3.

Each layer within this structure accepts data from the preceding layer and concatenates them with
the original features before passing them on to the subsequent layer. In the construction of each layer,
different types of forests are employed to amplify the diversity of the ensembles, which can contribute
positively to the model’s performance. Typically, each layer contains two varieties of forests: random
forest [11] and completely-random forest [12]. In the random forest, trees make splitting decisions by
choosing the optimal feature with the best Gini index from a randomly selected subset of features. In
contrast, trees within the completely-random forest select a feature at random to determine the splitting
criterion. Lastly, it is important to note that each layer includes p forests with ¢ trees in each, where p and
q are hyper-parameters.

In the gcForest framework, each forest evaluates an instance by calculating the class distribution. This
is done by determining the proportion of training examples from different classes at the leaf node where
the instance falls [4]. This method helps in estimating the likelihood of the instance belonging to each
class based on the data observed in the training phase. Consequently, the class distribution vector is
obtained by averaging the results across all trees within the same forest. Following the acquisition of
the class distribution vector, it is concatenated with the original feature set to serve as the input for the
subsequent level of the cascade. Assuming that the length of the input feature is IV, the task is an n-class
classification, and each layer of the gcForest consists of p forests. Consequently, each layer will yield p
n-dimensional vectors representing the class distribution. For instance, the feature length outputted by the
first level would be N + p x n, which represents the original feature length combined with the product of
the number of forests per layer and the number of classes.
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Fig. 4. Structure of scanning (the original input length is N).

3.2.2. Multi-Grained Scanning structure

To enhance the representation of the original data, a structure known as Multi-Grained Scanning is
introduced to process the raw data before feeding it into the cascade forest structure [4]. The raw features
are scanned with sliding windows of size ¢, creating a set of t-dimensional vectors. For instance, if the
length of the original data is N, then after scanning with a window size ¢, stride of 1, and padding of 0,
we obtain NV — ¢ + 1 t-dimensional vectors. These vectors are taken as instances to be input into a layer
of the cascade forest structure, where they are trained through random forests and completely-random
forests within that layer, producing a set of class distribution vectors. Continuing with the assumption
from the previous section, where the task is an n-class classification, and each layer includes p forests, the
N —t+ 1 n-dimensional vectors pass through p forests and eventually yield N — ¢+ 1 n-dimensional class
distribution vectors. These vectors are then concatenated to form a vector of length 2 x (N —t 4+ 1) X n,
which replaces the original features as the input for the cascade forest. The scanning structure is shown in
Fig. 4.

To enhance the randomness of data input, the scanning procedure employs multiple scans with different
window sizes, a method known as Multi-Grained Scanning. This technique inputs features scanned
with various window sizes into different cascade forests. The final results obtained from these forests
are then aggregated. This multi-faceted approach allows for a more robust and comprehensive feature
representation by capturing the inherent patterns in the data at different scales, ultimately contributing to
the versatility of the model.

3.3. DWT-cascade forest architecture

The structure for feature extraction, employing Discrete Wavelet Transform (DWT), and ECG multi-
classification, using gcForest, is detailed in Fig. 5. During the DWT-based feature extraction, we utilize
a Daubechies-4 (db4) [13] wavelet filter bank and set the decomposition level to four. Each level
of decomposition yields both approximation coefficients (cA) and detail coefficients (cD), with the
decomposition input for the next level being the cA from the previous one. The length of cA and cD
obtained at each level is the same, equal to (N + F' — 1)/2, where N is the length of the input data and
F'is the length of the db4 wavelet filter. Following a four-level decomposition, the resultant coefficients
cD1, cD2, cD3, cD4, and cA4 are concatenated to represent the original features, with a resultant length
of Np.

Subsequently, the features of length Np undergo Multi-Grained scanning structure, where they are
scanned with several different window sizes before being input into different cascade forest structures.
Assuming there are three different window sizes for scanning ¢1, ¢2, and ¢3, the raw features will then be
transformed into representations of length (N —t1+1) x n, (N —t24+1) x n,and (N —t3+1) x n
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respectively, with n denoting the number of classes for classification. These vectors are separately fed
into three corresponding cascade forests. Following this, the final prediction is determined by aggregating
the class vectors from the last level of each forest. The classification is then decided based on which one
has the highest cumulative value.

4. Experiment

4.1. Experimental setup

In order to evaluate our proposed model, we have partitioned the dataset into a training set and a test set,
allocating 80% for training and 20% for testing. Meanwhile, we evaluate the performance of classification
with the following metrics, which are defined by the following formula:

... TP 5)

precision = PP
TP+TN ©)

accuracy =
YT TP+FP+TIN+FN
TP

- _ 7
recall TP+ FN @)
Fle9x precision X recall )

precision + recall

where FP denotes the False Positive, FN denotes the False Negative, TP denotes the True Positive and the
TN denotes the True Negative.

In each layer of the gcForest, there are two hyper-parameters subject to fine-tuning: the number of
forests (denoted as p) within each layer and the number of trees (denoted as g) within each forest. It’s
important to note that the forests in each layer are divided into two types: random forests and completely
random forests. Consequently, in each layer, half of the forests, or p/2, are random forests, and the other
half are completely random forests. To understand the gcForest’s sensitivity to these hyper-parameters,
we conduct experiments by varying both the number of forests p in each layer and the number of trees ¢
within each forest.
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Table 2
Comparison performance

Method Accuracy  Recall  Precision F1
LDA-MLP 89.02%  69.53%  56.27%  62.20%
SVM 86.55%  58.65%  53.40%  55.90%
XGBoost 91.87%  75.09%  61.80%  67.80%
Random forest 94.60% - - -
CNN 94.03%  73.48%  57.00%  64.20%
ResNet 98.00% - - -
DCNN 91.33% - - -
CNN-BIiLSTM 96.77%  T4.67%  81.20%  77.80%

Deep Attention BILSTM  96.72% 96.43%  96.51%  96.46%
DWT+gcForest (ours) 98.55% 98.48%  98.44%  98.46%

Table 3
Ablation study result
Method Accuracy  Recall  Precision F1
gcForest 98.29%  98.23%  98.29%  98.25%

DWT-+gcForest  98.55%  98.48%  98.44%  98.46%

4.2. Result and discussion

The classification performance on the test set with the change of the number of forests within each
layer and the number of trees within each forest is shown in Figs 6 and 7, respectively.

From Fig. 6, it can be discerned that variations in the number of forests in each layer yield disparities
in the maximal and minimal values of accuracy, recall, precision, and F1, with differences approximately
around 0.07%, 0.08%, 0.08%, and 0.08%, respectively. Similarly, Fig. 7 shows that by varying the number
of trees in each forest, the difference between maximal and minimal values of accuracy, recall, precision,
and F1 is approximately 0.06%, 0.06%, 0.09%, and 0.10%, respectively. Hence, to balance computational
expenditure with model performance, we elect to set and as the final hyper-parameter configuration. In
this setting, the model performance is characterized by an accuracy of 98.55%, recall of 98.48%, precision
of 98.44%, and an F1 of 98.46%.

To appraise the performance of our proposed model more thoroughly, we have conducted a compar-
ative analysis with existing methods. This includes traditional machine learning algorithms including
LDA-MLP [14], SVM [15], XGBoost [16], and RandomForest [17], as well as deep learning methods
comprising CNN [18], ResNet [19], DCNN [20], CNN-BiLSTM [21], and Deep Attention BiLSTM [22].
The outcomes of this comparison are delineated in Table 2.

In traditional machine learning algorithms, the LDA-MLP method [14] employs the forward floating
search (SFFS) algorithm to derive a feature set, achieving an accuracy of 89.02%, a recall of 69.53%, a
precision of 56.27%, and an F1-score of 62.20% on the dataset. The SVM classifier with Morphological
and Dynamic Features [15] reached an accuracy of 86.55%. An ECG classification approach based
on XGBoost [16] attained an accuracy of 91.87%. Finally, the Random Forest classifier with features
utilizing wavelet packet decomposition [17] achieved the highest accuracy among machine learning
algorithms, namely 94.60%.

In the domain of deep learning algorithms, a CNN [18] that directly uses raw signals as input achieved
an accuracy of 94.03%, a recall of 73.48%, a precision of 57.00%, and an F1-score of 64.20%. A transfer
learning method employing ResNet [19] reached an accuracy of 98.00%. A DCNN with raw ECG
signals for inputs [20] obtained an accuracy of 91.33%. The CNN-BiLSTM [21] and Deep Attention
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BiLSTM [22], both ECG classification methods based on CNN and LSTM, differ in that the latter
incorporates an attention mechanism. They achieved accuracies of 96.77% and 96.72%, respectively.
Lastly, the deep ensemble method proposed in this paper demonstrated optimal performance, achieving
an accuracy of 98.55%, a recall of 98.48%, a precision of 98.44%, and an F1-score of 98.46%.

4.3. Ablation study

To evaluate the contribution of the DWT-based feature extraction module, we conduct an ablation
study on the proposed model. We only remove the feature extraction module from the proposed model,
while the overall hyper-parameter settings remain the same. As shown in Table 3, while the multi-grained
scanning structure is capable of enhancing the representation of the original data, the DWT-based feature
extraction module improves the performance of the proposed model.

5. Conclusions

In this paper, we propose a DWT-gcforest method for ECG signal classification with lower compu-
tational costs. Discrete wavelet transform (DWT) is utilized to extract the feature representation of the
original ECG signal, while the Multi-Grained Scanning structure enhances the representation. With the
structure of Cascade Forest, we obtain the classification outputs. Meanwhile, comparative experiments
and ablation studies on the model were conducted using the MIT-BIH Arrhythmia Database. The clas-
sification outcomes of the model manifested as an accuracy of 98.55%, a recall of 98.48%, a precision
of 98.44%, and an F1 of 98.46%. The results from our experiments demonstrate that the model we
proposed surpasses other models in performance. Moreover, our model demonstrates insensitivity to
hyper-parameters. Ablation studies have shown that the feature extraction module based on the DWT has
improved the model’s performance. However, a current limitation of the gcforest algorithm is its exclusive
reliance on CPU-based computation, which considerably slows down the processing speed. Additionally,
the algorithm proposed in this paper is based on intra-patient classification and does not account for the
potential performance in inter-patient classification scenarios. In the future, we intend to explore different
methods for feature extraction to enhance the model’s performance and reduce computational complexity.
Additionally, we will investigate inter-patient ECG classification to broaden the scope and applicability
of our research.

Conflict of interest

The authors have no conflicts of interest to declare.

Acknowledgments
This work was supported by the Fujian Provincial Health and Middle-aged Youth Backbone Talent
Training Project (2022GGB017).

References

[1] Moraga P. GBD 2016 Causes of Death Collaborators Global, regional, and national age-sex specific mortality for



(2]
(3]
(4]
(5]
(6]
(7]

(8]
(9]

[10]

(1]
[12]

[13]
[14]
[15]
[16]

[17]
(18]

[19]

[20]
(21]

(22]

M. Lin et al. / Discrete Wavelet Transform based ECG classification using gcForest S105

264 causes of death, 1980-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;
390(10100): 1151-1210.

Chung CT, Lee S, King E, et al. Clinical significance, challenges and limitations in using artificial intelligence for
electrocardiography-based diagnosis. International Journal of Arrhythmia. 2022; 23(1): 24.

Ebrahimzadeh A, Ahmadi M, Safarnejad M. Classification of ECG signals using Hermite functions and MLP neural
networks. Journal of Al and Data Mining. 2016; 4(1): 55-65.

Zhou ZH, Feng J. Deep forest. National Science Review. 2019; 6(1): 74-86.

Goldberger A, Amaral L, Glass L, Hausdorff J, Ivanov PC, Mark R, Stanley HE. PhysioBank, PhysioToolkit, and
PhysioNet: Components of a new research resource for complex physiologic signals. Circulation [Online]. 2000; 101(23):
e215-e220.

Zhang D, Zhang D. Wavelet transform. Fundamentals of image data mining: Analysis, Features, Classification and
Retrieval. 2019; 35-44.

Griffin D, Lim J. Signal estimation from modified short-time Fourier transform. IEEE Transactions on Acoustics, Speech,
and Signal Processing. 1984; 32(2): 236-243.

Aguiar-Conraria L, Soares MJ. The continuous wavelet transform: A primer. NIPE-Universidade do Minho. 2011.
Mallat SG. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Transactions on Pattern
Analysis and Machine Intelligence. 1989; 11(7): 674-693.

Utkin LV, Kovalev MS, Meldo AA. A deep forest classifier with weights of class probability distribution subsets.
Knowledge-Based Systems. 2019; 173: 15-27.

Breiman L. Random forests. Machine Learning. 2001; 45: 5-32.

Liu FT, Ting KM, Yu Y, et al. Spectrum of variable-random trees. Journal of Artificial Intelligence Research. 2008; 32:
355-384.

Vonesch C, Blu T, Unser M. Generalized Daubechies wavelet families. IEEE Transactions on Signal Processing. 2007;
55(9): 4415-4429.

Mar T, Zaunseder S, Martinez JP, et al. Optimization of ECG classification by means of feature selection. IEEE
Transactions on Biomedical Engineering. 2011; 58(8): 2168-2177.

Ye C, Kumar BVKYV, Coimbra MT. Heartbeat classification using morphological and dynamic features of ECG signals.
IEEE Transactions on Biomedical Engineering. 2012; 59(10): 2930-2941.

Shi H, Wang H, Huang Y, et al. A hierarchical method based on weighted extreme gradient boosting in ECG heartbeat
classification. Computer Methods and Programs in Biomedicine. 2019; 171: 1-10.

Li T, Zhou M. ECG classification using wavelet packet entropy and random forests. Entropy. 2016; 18(8): 285.

Sellami A, Hwang H. A robust deep convolutional neural network with batch-weighted loss for heartbeat classification.
Expert Systems with Applications. 2019; 122: 75-84.

Islam R, Rahman M, Ismail SM, et al. Transfer Learning in Deep Neural Network Model of ECG Signal Classification.
2022 International Conference on Recent Progresses in Science, Engineering and Technology (ICRPSET). IEEE. 2022.
pp. 1-4.

Yildirim O, San Tan R, Acharya UR. An efficient compression of ECG signals using deep convolutional autoencoders.
Cognitive Systems Research. 2018; 52: 198-211.

Chen A, Wang F, Liu W, et al. Multi-information fusion neural networks for arrhythmia automatic detection. Computer
Methods and Programs in Biomedicine. 2020; 193: 105479.

Tao Y, Li Z, Gu C, et al. ECG-based expert-knowledge attention network to tachyarrhythmia recognition. Biomedical
Signal Processing and Control. 2022; 76: 103649.



