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Abstract.
BACKGROUND: The wrist pulse wave under the optimal pulse pressure plays an important role in detecting human body’s
physiological and pathological information. Wavelet threshold filtering is a common method for pulse wave de-noising. However,
traditional filtering methods cannot smoothen the whole pulse wave well and highlight the details.
OBJECTIVE: In view of this, an attempt is made in this paper to propose the pulse wave denoising algorithm for pulse wave
under optimal pulse pressure according to the translation invariant wavelet transform (TIWT) and the new threshold function.
METHODS: Firstly, by using hyperbolic tangent curve and combining the advantages of soft threshold function and hard
threshold function, the new threshold function is derived. Secondly, based on the TIWT, pseudo-Gibbs phenomenon gets
suppressed.
RESULTS: The experiments show that in comparison to the traditional wavelet filtering algorithm, the novel algorithm can
better maintain the pulse wave geometric characteristics and has a higher signal to noise ratio (SNR).
CONCLUSION: The TIWT with improved new threshold compensates the shortcomings of the traditional wavelet threshold
denoising methods in a better way. It lays a foundation for extracting time-domain characteristics of pulse wave.
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1. Introduction

The pressure sensor is widely used for pulse wave collection because it simulates the pulse manipulation
of traditional Chinese medicine and collects pulse wave information under manual, air bag or mechanical
pressurization techniques. By applying different pressure to the pressure sensor, the intensity of the pulse
wave first increases to a maximum point and then fades. The pulse wave corresponding to the strongest
point is called the pulse wave under the optimal pulse pressure. It is usually used to assess human body’s
physiological and pathological information. Pulse wave signal de-noising is the first and a critical step in
physiological characteristics analysis.

The noise carried by the pulse wave mainly includes the power frequency noise, EMG noise and
respiratory noise. Power frequency noise can be removed by 50 Hz notch filter. EMG noise removal
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methods mainly include traditional filtering, adaptive filtering, mathematical morphology filtering, Kalman
filtering, ICA filtering, artificial neural network algorithm, wavelet filtering, etc. In the traditional filtering
methods, FIR filtering and smooth filtering are the most commonly used. FIR filtering method is usually
designed as a low-pass filter to remove high-frequency noise. However, the processing accuracy of the
band boundary is low so the useful information of the pulse wave signal is often filtered out [1–3]. The
smoothing filter is actually a linear filter whose window size affects the filtering effect and the general
window width has an empirical value. If the window is too wide, it will roughly be too smooth on the
other hand, when the window is too narrow, the denoising effect is not ideal [4]. The filter used in the
adaptive method has an automatic updating mechanism of filter coefficients. Based on minimum mean
square error (MSE) of the filtering result and the reference signal, a new set of filter coefficients are
generated by continuously superimposing and updating the adaptive updating algorithm, so as to obtain
the theoretically optimal filter. It can be seen from the principle of adaptive filter that the selection of
reference signal is an important aspect to determine the merits of the adaptive filter. However, in practice
it is difficult to use adaptive filtering directly, since the signal characteristics cannot be ascertained in
advance and then select a suitable reference signal [5–7]. The mathematical morphology filtering method
is derived from the image filtering algorithm, which is mainly used to expand and erode the signal,
and the open-close operation completes the pulse wave filtering. However, the processed pulse wave
produces a spike pulse phenomenon, introduces additional noise, and brings errors in the subsequent
pulse detection [8–11]. Kalman filter usually uses input and output signals to evaluate the system state and
realize filtering.. The parameters of Kalman filter change with time, and the optimal filter can be obtained
only when the prior statistical characteristics of the signal and noise are known [12–14]. ICA filtering was
first applied in the separation of sound signals however, it requires either less or equal number of signal
sources of the observation channels. For one-dimensional signal pulse waves, it is necessary to establish
multiple virtual channels and expand them into a matrix. In addition, solving the optimal solution of the
mixed matrix requires a large number of iterations with high complexity [15,16]. The artificial neural
network method can be regarded as an optimal filter however, the parameters of the filter need a lot of
memory training. At times, the effect of noise removal for the pulse wave without training is not very
good.

Since the wavelet transform can be used to decompose the signals at different scales, wavelet decom-
position has become one of the most popular methods used for pulse wave denoising in recent research.
The wavelet filtering algorithm mainly includes three processes: wavelet decomposition, filtering and
signal reconstruction. Wavelet decomposition mainly decomposes the signal through wavelet transform to
obtain wavelet coefficients. Filtering mainly uses one threshold functions (soft threshold, hard threshold
and others) to get the processed wavelet coefficients. Whereas, signal reconstruction uses the processed
wavelet coefficients to get the filtered signal. The hard threshold function can highlight the detailed
features l, but it introduces the Gibbs phenomenon. The soft threshold smoothens the signal as a whole,
but may result in losing the detailed features of the signal [17–20].

In this paper, a new wavelet denoising method based on the translation invariant wavelet with new
threshold function is proposed. According to the soft threshold function and the hard threshold function’s
characteristics and combine the hyperbolic tangent function and the exponential function’s characteristics,
a new threshold function.is constructed. The TIWT method is used to attenuate the pseudo-Gibbs
phenomenon and highlight the detailed characteristics of the pulse wave. As compared to the traditional
wavelet filtering algorithm, the experiments show that the novel algorithm can better maintain the pulse
wave geometric characteristics and has a higher signal to noise ratio (SNR).

The paper is divided in four parts: (1) Introduction: This section describes the current research progress
of pulse wave denoising at home and abroad, outlines the significance and the innovative aspect of the
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Fig. 1. (a) The self-developed multi-channel Chinese medicine pulse detector equipment. (b) Composite sensor built in the
acquisition probe.

present work. (2) Materials and Methods: In this section, the pulse wave acquisition method is introduced
and the optimal pulse wave is obtained through the preprocessing method. Subsequently, the derivation
process of the new threshold function, the process of the TIWT denoising method and the method of
evaluating the algorithm are elaborated. (3) Algorithm results: By introducing the selection method of
wavelet basis and the decomposition level, the results are obtained. By comparing the soft threshold and
the hard threshold, the effectiveness of the algorithm is proved (4) Conclusion: Based on the findings, this
section summarizes the process and significance of the entire algorithm and the application value of the
algorithm.

2. Method

2.1. Pulse wave signal acquisition

Figure 1a depicts the self-developed multi-channel Chinese medicine pulse detector equipment to
complete the acquisition of pulse wave signals. The acquisition probe of the pulse detector has a built-in
coincidence sensor, which simulates the pulse manipulation of traditional Chinese medicine by applying
10–150 mm Hg pressure through the air bag to collect the pulse wave information under different gradients
of pressure as shown in Fig. 1b. The pulse wave data acquisition time is 10 seconds at each air pressure.
Figure 2a shows the pulse wave data collected during the completion process.

2.2. Pulse wave signal preprocessing

Pulse wave preprocessing mainly consists of three parts: interference suppression of adjacent channels,
noise signal recognition, and pulse wave extraction at the best pressure section. Firstly, based on the
notch filter, the 50 Hz power frequency noise is removed, and the mean filter is used to remove the
baseline drift of the signal caused by breathing and other reasons. Based on this, three sub-modules of
dynamic mechanical analysis of inter-point interference, interference channel modeling, and interference
suppression algorithm are established. According to the amplitude and phase frequency characteristics
of the interference channel, FFT is used to suppress the interference signal, it effectively weakens the
inter-point interference caused by the vibration of adjacent sensors, and ensures the authenticity and
stability of the pulse wave signal [21]. Secondly, the CNN classification and recognition model of noise
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Fig. 2. (a) Single channel pulse sensor signal. (b) Period division of pulse wave. (c) Obtain single-cycle pulse wave. (d) Obtain
D-S curve (e) Optimal pulse wave sequence.

signal and pulse wave signal is constructed to realize the recognition of noise signal [22]. Finally, the
optimal peak searching algorithm based on the modulus maximum realizes the peak recognition of pulse
wave. According to the lowest point between the two peaks as a starting point, the single pulse wave
cycle division is realized [23]. The average single-cycle pulse wave waveform is obtained by the average
processing method. The curve of the average single-cycle pulse wave peak which changes with each
average static pressure value is called the D-S curve. The best pulse wave band is obtained by extracting
the pulse wave at the strongest point of the D-S curve. Since the signal is stable, the optimal pulse wave
band is of great significance in the intelligent diagnosis of traditional Chinese medicine, which is also the
pulse wave band that this paper mainly deals with [24].
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2.3. New threshold wavelet filtering

2.3.1. Derivation process of new threshold function
The hard threshold function and soft threshold function’s schematic diagrams are shown in Fig. 2a and

b respectively. From the graphics analysis, we find that the threshold and the hard threshold functions
have their inherent shortcomings. In the hard threshold method, discontinuities (the expression ω̂j,k) exist
at λ point and -λ point, which cause the pulse wave signal to oscillate at the mutation point namely,
the pseudo-Gibbs phenomenon. However, the soft threshold method can overcome this defect but from
the perspective of graphics and expressions, although the value of ω̂j,k and its relative value of ωj,k are
continuous, there is a constant deviation, which leads to the weakening or even disappearance of the
detailed features of the de-noised pulse wave.

ŵj,k =

{
wj,k, |wj,k| > λ
0, |wj,k| < λ

(1)

Equation (1) is the hard threshold function expression. Where, wj,k is the wavelet coefficient.

ŵj,k =

{
sign(wj,k) (|wj,k| − λ) , |wj,k| > λ
0, |wj,k| < λ

(2)

Equation (2) is the soft threshold function expression. Where, sign( ) is a symbolic function, threshold
value λ = δ

√
2lnN/ln (j + 1) and δ = median (abs (wj,k)) /0.6745.

In order to retain the de-noised pulse wave’s detail characteristics, and weaken the pseudo-Gibbs
phenomenon, and improve SNR, according to the characteristics of soft and hard threshold functions,
we need to build a new threshold function. This function should be proposed based on the following
points: (1) Ensure that the wavelet threshold value is continuous at ±λ and (2) The deviation of wavelet
coefficients of useful signals can be minimized.

From the analysis of Eqs (1) and (2), we replace these by the following formula:

f (wj,k) = sign (wj,k) (|wj,k| − λ ∗ a) (3)

Where, a is the real number with a value range [0,1]. When a = 0, the above formula is evolved into
the hard threshold function. When a = 1, the above formula is evolved into the hard threshold function.

When a ∈ (0,1), the zero position of the abscissa is wj,k = ±λ ∗ a. Here we introduce a function
g(wj,k), so that Eq. (3) can make ŵj,k tend to zero when wj,k ∈ (−λ,+λ), and keep ŵj,k linear when
wj,k ∈ (−∞,−λ)U(+λ +∞). Here, it is necessary for g(wj,k) to have a value that tends to zero at
(−λ,+λ) and 1 at (−∞,−λ)U (+λ+∞). As shown in the Fig. 3a, the tangent function is an odd
function and ranges in (−1, +1).

lim
wj,k→+∞

tanh (wj,k) = 1 (4)

lim
wj,k→−∞

tanh (wj,k) = −1 (5)

In order to make the hyperbolic function meet the requirements, we introduce an exponential function
and add a regulating factor to the exponential function. The expression of g (wj,k) is as follows:

g (wj,k) = tanh(e∧(b∗(|wj,k|−λ)) ∗ (|wj,k| − λ)) (6)

Where, b is an adjustable factor, b > 1.
Thus, the novel wavelet threshold function can be expressed as follows:

ŵj,k = sign (wj,k) (|wj,k| − λ ∗ a) ∗ tanh(e∧(b∗(|wj,k|−λ)) ∗ (|wj,k| − λ)) (7)



S556 J. Zhang et al. / Application of translation wavelet transform with new threshold function

Fig. 3. (a) Schematic diagram of hard threshold function. (b) Schematic diagram of soft threshold function. (c) Schematic
diagram of hyperbolic tangent function. (d) g(wj,k) function curve under different b values.

In Eq. (7), since g(wj,k) function is a continuous function, the expression has a continuous property at
±λ, and when |wj,k| > λ, the function has a higher derivative property.

When wj,k > 0:

lim
wj,k→+∞

ŵj,k
wj,k

= lim
wj,k→+∞

sign (wj,k)

(
|wj,k| − λ∗a)∗ tanh(e(b∗(|wj,k|−λ))∗ (|wj,k| − λ)

)
wj,k

= lim
wj,k→+∞

sign (wj,k)

(
1− λ∗a∗

tanh(e(b∗(|wj,k|−λ))∗ (|wj,k| − λ))
wj,k

)
(8)

= 1− λ∗a
When wj,k < 0:

lim
wj,k→−∞

ŵj,k
wj,k

= lim
wj,k→−∞

sign (wj,k)

(
|wj,k| − λ∗a)∗ tanh(e(b∗(|wj,k|−λ))∗ (|wj,k| − λ)

)
wj,k

= lim
wj,k→−∞

−

(
1 + λ∗a∗

tanh(e(b∗(|wj,k|−λ))∗ (|wj,k| − λ))
wj,k

)
(9)

=−1 + λ∗a
In Fig. 4, when a = 0, the function tends to small soft threshold discriminant function while when a =

1, the function tends to wavelet hard threshold discriminant function. When a ∈ (0,1), the function is
between soft threshold and hard threshold.
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Fig. 4. The change curve of the new threshold function under different a values.

2.3.2. Specific process of translation wavelet transforms
The flow chart of denoising algorithm is shown in Fig. 5. Set the vector input signal after preprocessing

as s0,n(0 < n 6 N). The cyclic translation operator is Th. Note that Th (s0,n) is the time domain
translation of s0,n. The translation range is 0 < n 6 N . The following expression can be obtained:

Th (s0,n) = s0 (n+ h) (10)

The new signals with a certain phase difference corresponding to the vector input signal s0,n can be
obtained. Its cyclic anti-translation operator T−h is its inverse operation.

T−h = (Th)
−1 (11)

Let Cj,k and Dj,k correspond to the low-frequency component (scale coefficient) and high-frequency
component (wavelet coefficient) of the one-dimensional signal S transformation into the wavelet domain,
respectively, j represents the wavelet decomposition series, and k represents the number of bits of cyclic
translation. G and H represent down-sampling high-pass and low-pass operators respectively, C0,0 = S,
then the decomposition formulae are given by:

Dj+1,2k = GT0Cj,k, Dj+1,2k+1 = GT1Cj,k (12)

Cj+1,2k = HT0Cj,k, Cj+1,2k+1 = HT1Cj,k (13)

The reconstruction formulae are:

αj−1,k = T0

(
G̃Cj,2k + H̃Dj,2k

)
(14)

βj−1,k = T−1

(
G̃Cj,2k+1 + H̃Dj,2k+1

)
(15)

Cj−1,k = (αj−1,k + βj−1,k) /2 (16)
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Fig. 5. Flow chart of denoising algorithm.

The reconstruction process is actually the inverse process of decomposition. At each level of the wavelet
reconstruction, multiple low-frequency components can be generated, which require the inverse translation
and averaging of scale coefficients. Finally, the vector output is post-processed to obtain one-dimensional
output signals y(h), 0 < h 6 H , and then the translation invariant multi-wavelet reconstruction signal is
obtained by averaging:

fr =

H∑
h=1

y(h)/H (17)

In order to prove the effectiveness of the translation invariance, we make the following assumption:

y(h) = s (n) + bh (n) (18)

Where, s (n) is the clean pulse wave signal that appears repeatedly, b (n) is the Gibbs oscillation signal
caused by the threshold function when other noise signals not removed. According to Eq. (18, (17) can be
re-expressed as follows:

fr =
1

H

H∑
h=1

y(h) (n) =
1

H

H∑
h=1

[s (n) + bh (n)] = s (n) +
1

N

N∑
h=1

[bh (n)] (19)
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The SNR of pure signal and noise can be derived as follows by assuming that P is the power of s (n),
σ2 is the variance of bi (n):

SNR =
P

σ2
(20)

Equation (19) shows that the TIWT algorithm can reduce the noise by N times while, Eq. (20) shows
that the algorithm can improve the SNR of pulse wave by

√
N times.

2.4. Algorithm evaluation criteria

In the experimental analysis, SNR and MSE are used to evaluate the de-noising effect. For the
convenience of the analysis, SNR before signal de-noising is γin, SNR after signal de-noising is γout, and
the improvement of SNR after de-noising is γimp compared with that before de-noising, so the calculation
formulae can be given as follows:

γin = 10lg
∑L

n=1 S
2 (n)∑L

n=1 g
2 (n)

(21)

γout = 10lg
∑L

n=1 S
2 (n)∑L

n=1

[
Ŝ(n)− S(n)

]2 (22)

rimp = γout − γin (23)

Where, S (n) represents the noiseless pulse wave signal, and Ŝ(n) represents the filtered pulse wave
signal then, RMSE can be calculated as follows:

RMSE =

√√√√ 1

L

L∑
n=1

[
Ŝ(n)− S(n)

]2
(24)

3. Algorithm results

3.1. The Choice of wavelet basis and wavelet decomposition level number

In wavelet threshold denoising, wavelet bases and wavelet decomposition layers are to be determined
first. At present, the common discrete wavelet families include DB (Daubechies) wavelet family, SYM
(Symlets) wavelet family and COIF (Coiflet) wavelet family. The pulse wave signal data is used for
DTW transformation, and after the wavelet threshold function processing, the wavelet coefficients are
reconstructed. The optimal wavelet basis function is selected by using the three parameters of SNR:
MSE, filter length two cases are considered to analyze SNR and the peak error results (unified use of
full threshold processing, decomposition scale bit is 4, SNR is 25, and the threshold function is hard
threshold).

It is observed from Fig. 6 that when the filter length exceeds 10, SNR of the output signal tends to
be stable. The output SNR of DB wavelet system and SYM wavelet system is 2 dB higher than that
of COIF series wavelet system. From the perspective of the MSE of the output signal, when the filter
length exceeds 12, the MSE of the output signal tends to a fixed value. The MSE of da wavelet system
and SYM wavelet system is less than that of COIF system. Taking into consideration the influence of
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Fig. 6. (a) Filter length and output SNR. (b) Filter length and MSE output.

Fig. 7. (a) Number of decomposition layers and output SNR. (b) Number of decomposition layers and MSE of output signal.

vanishing distance on data, we choose DB6 wavelet for pulse wave filtering. After selecting the wavelet,
we need to consider the influence of decomposition level on wavelet denoising. Here, SNR and MSE of
the output signal are used to evaluate the number of decomposition layers. (Full threshold processing is
used uniformly, SNR is 25, and the threshold function is hard threshold).

It can be seen from Fig. 7 that when the number of decomposition layers lev = 4, the maximum SNR
of the output signal is 37 dB, and the MSE of the output signal reaches the minimum 0.0066 (mv), so the
number of wavelet decomposition layers selected is 4.

3.2. Evaluation of algorithm effectiveness

The standard pulse wave signal is added with zero-mean Gaussian white noise (20 dB). The comparison
of hard threshold, soft threshold, new threshold and new threshold methods is done with translation
invariant wavelet transform to denoise the pulse wave signal. Table 1 shows the denoised γout and RMSE
values in the traditional threshold denoising methods where, the hard threshold de-noising method’s MSE
is slightly lower, and SNR is 1.26 times of the soft threshold de-noising method. The improved new
threshold de-noising method’s SNR is 1.32 times of the hard threshold de-noising method.

An attempt is also made to verify the stability of the algorithm under different noises. Different zero
mean Gaussian white noise is added to the noiseless pulse wave signal to generate noisy pulse signals
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Table 1
Comparison of different wavelet denoising methods

Wavelet denoising method rout/dB RMSE
Hard threshold 34.31 0.0089
Soft threshold 27.37 0.0199
New Threshold 36.22 0.0072
Translation invariance with new threshold 37.48 0.0062

Fig. 8. (a) The cures of γin and γout. (b) The cures of γin and RMSE.

Fig. 9. (a) Original pulse wave. (b) wavelet hard threshold denoising. (c) wavelet soft threshold denoising. (d) Translation
invariance with new threshold denoising.
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with different SNRs. The wavelet hard threshold, the wavelet soft threshold, the new wavelet threshold
and the algorithm in this paper are used to denoise the noisy pulse signal. The SNR and MSE before and
after denoising are shown in Fig. 8. It is noticed that the new threshold increases SNR and reduces the
MSE. The translation invariant new threshold wavelet denoising further improves SNR and reduces the
MSE.

Figure 9b shows the effect of using the hard threshold wavelet de-noising algorithm to de-noise the
original signal in Fig. 9a. The hard threshold can highlight the detailed characteristics of the pulse wave,
but additional mutation points are introduced by some detail feature points (shown in the blue area).
Figure 9c shows the effect of using the soft threshold wavelet denoising algorithm to denoise the original
signal in Fig. 9a. From the overall view of the figure, the soft threshold can smoothen the pulse wave as a
whole, and the smooth transition leads to the detailed characteristics of the pulse wave (shown in the red
area). Figure 9d shows the effect of denoising the original signal in Fig. 9a using the algorithm proposed
in this paper. It is evident that the algorithm in this paper is smooth as a whole and retains the detailed
characteristics of the pulse wave.

4. Conclusion

The pressure pulse wave signal is weak and gets easily affected by EMG noise, which makes it
difficult to extract the signal features. Compared with the traditional methods, the translation invariant
wavelet denoising method proposed in this paper is more suitable for pulse wave signal denoising. The
improved new threshold shifts invariant wavelet transform method and compensates the shortcomings of
the traditional wavelet threshold denoising methods in a better way. This method discards the traditional
threshold function, uses a new wavelet threshold function, and further combines the translation invariant
wavelet transform on this basis, which not only improves the denoising effect to a greater extent but also
effectively suppresses the pseudo-Gibbs phenomenon. In addition, through simulation experiments, it
is further verified that applying translation invariant wavelet transform to the processing of pulse wave
can obtain better denoising effect. Thus, it is verified that this method can improve the SNR and reduce
the root MSE of the signal. The preprocessing method mentioned in this paper can support the feature
extraction and recognition of subsequent pulse wave signals, and has good practical significance and
reference value.
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