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Abstract.
BACKGROUND: Protein-ligand binding affinity is of significant importance in structure-based drug design. Recently, the
development of machine learning techniques has provided an efficient and accurate way to predict binding affinity. However, the
prediction performance largely depends on how molecules are represented.
OBJECTIVE: Different molecular descriptors are designed to capture different features. The study aims to identify the optimal
circular fingerprints for predicting protein-ligand binding affinity with matched neural network architectures.
METHODS: Extended-connectivity fingerprints (ECFP) and protein-ligand extended connectivity fingerprints (PLEC) encode
circular atomic and bonding connectivity environments with the preference for intra- and inter-molecular features, respectively.
Densely-connected neural networks are employed to map the circular fingerprints of protein-ligand complexes to binding
affinities
RESULTS: The performance of neural networks is sensitive to the parameters used for ECFP and PLEC fingerprints. The
R2_score of the evaluated ECFP and PLEC fingerprints reaches 0.52 and 0.49, higher than that of the improperly set ECFP and
PLEC fingerprints with R2_score of 0.45 and 0.38, respectively. Additionally, compared to the predictions from the standalone
fingerprints, the ECFP+PLEC conjoint ones slightly improve the prediction accuracy with R2_score of approximately 0.55.
CONCLUSION: Both intra- and inter-molecular structural features encoded in the circular fingerprints contribute to the
protein-ligand binding affinity. Optimizing the parameters of ECFP and PLEC can enhance performance. The conjoint fingerprint
scheme can be generally extended to other molecular descriptors for enhanced feature engineering and improved predictive
performance.
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1. Introduction

As biomolecules are essential components of living systems, understanding their biological, chemical,
and physical properties is crucial in elucidating their functions. Quantitative structure-activity/property
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relationship (QSAR/QSPR) models have been developed to establish the link between molecular struc-
tures and properties [1,2]. In particular, protein-ligand binding affinity is of significant importance in
QSAR/QSPR studies [3,4]. Although various approaches have been developed for predicting bind-
ing affinity, recent advances in machine-learning techniques have paved an alternative way that offers
impressive efficiency and accuracy in prediction [5,6].

By converting molecular structures into computer-readable feature vectors, machine learning maps
the input structural features through hierarchical non-linear functions to the output molecular properties.
However, the prediction performance depends on how molecules are represented. Many types of molecular
descriptors have been designed to meet the different demands of structure-property modeling [7–12].
Binding affinity of a protein-ligand complex is related to three types of interactions: intra-protein, intra-
ligand, and inter-protein-ligand. In this study, two types of circular fingerprints are used to capture the
intra-molecular and inter-molecular structural and interaction information. Specifically, the intra-protein
and intra-ligand features are encoded by the extended-connectivity fingerprints (ECFP) [7], and the inter-
molecular features are encoded by the protein-ligand extended connectivity fingerprints (PLEC) [10].
Neural networks are employed to learn features from the circular fingerprints to evaluate the effects
of intra- and inter-molecular features on protein-ligand binding affinity. The improved performance
from the conjoint (ECFP+PLEC) fingerprints further suggests that these two fingerprints can provide
complementary information for predicting molecular properties of complex systems.

2. Materials and methods

2.1. Protein-ligand binding data

The PDBbind database [13] holds a PDB-wide collection of experimentally measured binding affinities
for the protein-ligand complexes with known 3D structures. The refined set of PDBbind is selected in this
study due to its higher quality binding affinity data in the form of dissociation constant Kd, inhibition
constant Ki or -logKd/Ki constant (pK). The current release of PDBbind refined set (version 2020)
contains 5316 protein-ligand complexes, which is randomly split into training, validation and test subsets
with a ratio of 3:1:1 for the subsequent neural networks learning and prediction.

2.2. ECFP fingerprints

As shown in Fig. 1A, the ECFP generation process assigns an integer identifier to each substructure
feature, denoted by a central atom and a diameter, by a hashing procedure. The positions of “1” bits
(representing the presence of particular substructures) in the fixed-length binary vector representation
are derived from these integer identifiers. There are two major parameters: maximum diameter (dmax)
and number of bits (nBits). In this study, ECFP fingerprints are computed by the RDKit package
(https://rdkit.org). For clarity, we use the notation of ECFPdmax

nBits (e.g., ECFP4
2048) to explicitly denote the

ECFP fingerprints generated with the specified values of dmax and nBits.

2.3. PLEC fingerprints

The PLEC generation process, as depicted in Fig. 1B, involves the identification of a pair of interacting
atoms (from the protein and ligand, respectively) if the distance between them is within a distance cut-off
(in 3D). As with the ECFP generation process shown in Fig. 1A, the substructures denoted by the central
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Fig. 1. Constructions of the ECFP (A) and PLEC (B) fingerprints. (C) Neural network architecture for the molecular finger-
prints-based protein-ligand binding affinity prediction.

atom itself and its atomic neighbors and bonding connectivity (up to the predefined maximum diameter,
i.e., depth) are generated for each atom. An integer identifier is then assigned to each pair of substructures
and the positions of “1” bits in the fixed-length binary vector representation are derived from these
identifiers. There are four major parameters: distance cut-off, protein depth (dprotein), ligand depth (dligand),
and number of bits (nBits). In this study, the default value of 4.5 Å is applied for the distance cut-off
and different values of dprotein, dligand, and nBits are used to generate different fingerprints. The PLEC
fingerprints are computed by the Open Drug Discovery Toolkit (https://oddt.readthedocs.io). For clarity,
we use the notation of PLECdligand−dprotein

nBits (e.g., PLEC2−10
4096 ) to explicitly denote the PLEC fingerprints

generated with the specified values of dligand, dprotein, and nBits.

2.4. Neural networks and performance metrics

As shown in Fig. 1C, a densely-connected neural network (DNN) is adopted to predict the protein-
ligand binding affinities. We set the number of hidden layers to be two and train the DNN with different
number of neurons in hidden layers (n1 and n2 in Fig. 1C). The GridSearchCV is used to optimize
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the hyperparameters. Specifically, eight different values of n1 and n2, including 32, 64, 128, 256, 512,
1024, 2048, and 4096 are assessed individually. The activation function is tuned with “Relu”, “tanh”, and
“softmax”. The “Adam” optimizer with a default learning rate of 0.001 is employed due to its adaptive
learning momentum strategy and high efficiency [14]. To control the balance between overfitting and
underfitting, the early stopping conditioned on the validation loss with a tolerance of 0.01 within 20
epochs is adopted.

Binding affinity prediction is a single-valued regression task. The mean squared error (MSE), mean ab-
solute error (MAE), Pearson correlation coefficient (R), and R2_score (R2) are calculated to quantitatively
assess the predictive performance.

3. Results

3.1. Intra- and inter-molecular features

To encode exclusively the intra-molecular (intra-protein and intra-ligand) structural features within
the pocket region, we generate the ECFP fingerprints of protein-ligand complexes as follows: (i) ECFP
fingerprints are calculated separately for the protein pocket (ECFPprotein) and the corresponding ligand
molecule (ECFPligand); (ii) ECFP fingerprint of the protein-ligand complex is calculated by performing
a bitwise “OR” operation, i.e., ECFPcomplex = ECFPprotein OR ECFPligand. For example, if the ECFPs
for the pocket and ligand are “0100011000. . . ” and “0011000011. . . ”, respectively. The ECFP for the
protein-ligand complex after the bitwise “OR” operation would be “0111011011. . . ”. This approach
ensures that the ECFP fingerprints do not encode any inter-molecular interactions.

By definition, PLEC fingerprints encode circular environments for all atom pairs in contact between a
protein and its ligand. Unlike ECFP, PLEC fingerprints exclusively account for inter-molecular interaction
features within the pocket region of a protein-ligand complex. It should be noted that while the ECFP
environment is based solely on a molecule’s topology to describe the physicochemical properties of a
central atom, the selection of atom pairs in contact actually involves the 3D structural information of the
protein-ligand complex.

The tested range of (dmax, nBits) for ECFPs is selected based on trends in DNN performance. Specif-
ically, for a fixed dmax, we increase the value of nBits from 1024 by a factor of 2 until the DNN
performance converges or starts to degrade, which determines the dmax-dependent best DNN perfor-
mance. Starting from 2, we gradually increase the value of dmaxuntil the dmax-dependent best DNN
performance converges or starts to degrade. Similarly, the tested range of (dprotein, dligand, nBits) for PELCs
is also selected based on DNN performance.

3.2. ECFP performance

The loss (MSE) can be tracked during the DNN training process. Figure 2A gives the loss in the
training and validation subsets for the ECFP8

2048 fingerprint, which indicates a tendency toward reaching
a balance point between overfitting and underfitting. Furthermore, the similar predictive performance in
the training and validation subsets, as shown in the scatter plot of the predicted pK vs. experimental (true)
pK (Fig. 2B) for the ECFP8

2048 fingerprint, indicates that the DNN model is properly trained. It should be
noted that the training and test results for other ECFP fingerprints are similar to those for ECFP8

2048 (as
shown in Fig. 2A and B).
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Fig. 2. The loss in the training and validation subsets (A) and the scatter plot of the predicted pK vs. experimentally determined
pK (B) for ECFP8

2048 , respectively. The MAE (C), MSE (D), R (E), and R2 (F) in the test subset for different ECFPs.

To quantitatively evaluate the predictive performance of different ECFP fingerprints, we calculate the
MAE, MSE, R, and R2, as shown in Fig. 2C, D, E, and F, based on the predicted and true pKs in the
test subset. Overall, there are no significant differences in predictive performance caused by changes in
dmax and nBits. The MAE, MSE, R, and R2 of all the tested ECFP fingerprints are in the ranges of (1.06,
1.15), (1.88, 2.18), (0.67, 0.73), and (0.45, 0.52), respectively. For dmax = 2, very slight differences
in prediction at nBits = 1024, 2048, and 4096 suggest that the model is nearly independent of nBits
values. However, for dmax = 4, 6, and 8, predictive performance improves and reaches convergence as
nBits increases. Among all the tested ECFP fingerprints, ECFP6

2048, ECFP6
4096, ECFP6

8192, ECFP8
2048 and

ECFP8
4096 show similar but better performances than the others.



S492 Z. Yin et al. / Neural networks prediction of the protein-ligand binding affinity with circular fingerprints

Fig. 3. The loss in the training and validation subsets (A) and the scatter plot of the predicted pK vs. experimentally determined
pK (B) for PLEC4−10

16384, respectively. The MAE (C), MSE (D), R (E), and R2 (F) in the test subset for different PLECs.

3.3. PLEC performance

As depicted in Fig. 3A and B for PLEC4−10
16384 (others not shown), the loss (MSE) in training and

validation subsets and the scatter plot for the comparison between predicted and true pK values suggest
that the DNN models for the PLEC fingerprints are well trained. The MAE, MSE, R, and R2 for all the
tested PLEC fingerprints, as shown in Fig. 3C, D, E, and F, are within the ranges of (1.05, 1.19), (1.91,
2.30), (0.63, 0.71), and (0.38, 0.49), respectively. Similar to the ECFP fingerprints, the values of dprotein,
dligand, and nBits have an impact on the predictive performance of the PLEC-based DNN model. For a
fixed set of dprotein and dligand (e.g., dprotein = 4 and dligand = 10), increasing the value of nBits leads to an
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Table 1
Performance (R2) of three types of fingerprints for different models

Fingerprints RF XGBoost LightGBM DNN
ECFP6

4096 0.53 0.53 0.53 0.52
ECFP8

2048 0.52 0.53 0.53 0.52
PLEC2−10

16384 0.49 0.48 0.48 0.48
PLEC4−10

16384 0.47 0.48 0.47 0.49
ECFP6

4096 + PLEC2−10
16384 0.57 0.56 0.55 0.55

ECFP6
4096 + PLEC4−10

16384 0.55 0.54 0.54 0.55
ECFP8

2048 + PLEC2−10
16384 0.57 0.56 0.55 0.54

ECFP6
4096 + PLEC2−10

16384 0.56 0.56 0.55 0.54

increase in predictive performance until it reaches convergence. Among all the tested PLEC fingerprints,
PLEC2−10

8192 , PLEC2−10
16384, PLEC2−10

32768, PLEC4−10
16384, and PLEC4−10

32768 exhibit similar but better performances
than the others.

3.4. ECFP+PLEC performance

We select two of the top-performing ECFP fingerprints (ECFP6
4096 and ECFP8

2048) and two of the
top-performing PLEC fingerprints (PLEC2−10

16384 and PLEC4−10
16384) to create four ECFP+PLEC fingerprints.

As listed in Table 1, the performances of the four conjoint fingerprints are quite similar with R2 values of
approximately 0.55. Although the improvement in prediction accuracy compared to standalone fingerprints
is modest, the results suggest that combining intra- and inter-molecular structural information can enhance
the ability of DNN models to capture molecular features for binding affinity prediction.

In addition to the choice of molecular representation, the performance of machine learning is also
influenced by the underlying algorithms used for feature engineering. As listed in Table 1, we test
the performances of three typical machine learning algorithms, i.e., random forest (RF), XGBoost and
LightGBM. However, the similar predictive performances of all four models indicate that altering the
feature engineering algorithm may not significantly improve the prediction accuracy. The information of
presence/absence of substructures alone is limited and not sufficient for accurately predicting the binding
affinities of protein-ligand complexes. Additional information, such as the positions of substructures, may
be beneficial for improving predictions. Therefore, properly encoding the spatial information of identified
substructures remains a challenge for the further development of circular fingerprints-based molecular
descriptors.

4. Discussion

The independent nature of the substructures represented by the “1” bits in both ECFP and PLEC
fingerprints suggests that the DNN model is a suitable choice, as it can effectively learn useful information
from independent features of input data. The number of hidden layers (nhidden) in DNN is a crucial
hyperparameter, and its performance is sensitive to the choice of nhidden. In this study, we only test
the DNN performance with nhidden = 2. Nevertheless, the trends of DNN predictions with the ECFP
and PLEC parameters (e.g., dprotein, dligand, dmax, and nBits) should be relatively insensitive to nhidden.
Moreover, different machine learning algorithms, such as support vector machine (SVM), convolutional
neural network (CNN), and graph neural network (GNN), map the input features to output targets in
various aspects and capabilities. Combining DNN with other algorithms may enhance feature engineering
for better performance.
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Biomolecules are primarily composed of carbon, nitrogen, and oxygen atoms. Although their covalent
bonding patterns differ, the substructures encoded by circular fingerprints (both ECFP and PLEC) are
relatively limited, especially for proteins. To address this issue, various types of fingerprints are designed
to encode specific aspects of molecular features. Conjoint fingerprints, which combine different types
of fingerprints, are expected to be more informative and can achieve better performance than individual
ones [15–18]. In fact, binding affinities are determined by the 3D structures of protein-ligand complexes.
Combining circular fingerprints with 3D ones, such as molecular surface fingerprints [11], may provide
a more comprehensive representation of the underlying molecular structure and enhance predictive
performance.

Furthermore, it is important to note that protein-ligand binding data is collected from different experi-
mental platforms with their 3D structures solved in different resolutions. Directly analyzing the integrated
data may lead to issues such as the batch effect [19,20], resulting in limited predictive performance.
To overcome these limitations, a promising approach is to combine molecular docking and molecular
dynamics simulations [21,22] with machine learning algorithms. This can provide a more accurate
representation of the protein-ligand binding interactions and improve predictive performance.

5. Conclusions

In this study, we exclusively use two types of circular fingerprints, ECFP and PLEC, to encode the
intra-molecular and inter-molecular structural features of protein-ligand complexes. The neural networks
learning from the standalone fingerprints illustrates that both types of features contribute to the protein-
ligand binding affinities. Through systematic testing of different ECFP and PLEC fingerprints, we
identified the optimal combinations of the fingerprints with neural network architectures, which can
be applied to various applications such as virtual screening, structure-activity relationship modeling
and compound library analysis. The improved predictive performance from the ECFP+PLEC conjoint
fingerprints suggests that the combination of two complementary fingerprints can better capture the
molecular features and interactions that determine the protein-ligand binding affinity. We anticipate that
the conjoint fingerprint scheme can be generally extended to other molecular descriptors for enhanced
feature engineering and improved predictive performance.
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