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Abstract.
BACKGROUND: High-resolution (HR) magnetic resonance imaging (MRI) provides rich pathological information which is of
great significance in diagnosis and treatment of brain lesions. However, obtaining HR brain MRI images comes at the cost of
extending scan time and using sophisticated expensive instruments.
OBJECTIVE: This study aims to reconstruct HR MRI images from low-resolution (LR) images by developing a deep learning
based super-resolution (SR) method.
METHODS: We propose a feedback network with self-attention mechanism (FNSAM) for SR reconstruction of brain MRI
images. Specifically, a feedback network is built to correct shallow features by using a recurrent neural network (RNN) and the
self-attention mechanism (SAM) is integrated into the feedback network for extraction of important information as the feedback
signal, which promotes image hierarchy.
RESULTS: Experimental results show that the proposed FNSAM obtains more reasonable SR reconstruction of brain MRI
images both in peak signal to noise ratio (PSNR) and structural similarity index measure (SSIM) than some state-of-the-arts.
CONCLUSION: Our proposed method is suitable for SR reconstruction of MRI images.
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1. Introduction

Magnetic resonance imaging (MRI) uses strong magnets, radio waves and computers to construct
images, which is suitable for imaging soft tissues such as ligaments, tendons, and spinal cords. High-
resolution images provide doctors with more abundant pathological information and improve the reliability
of diagnosis. At present, obtaining higher resolution brain MRI image usually relies on two ways:
extending scan time and using more sophisticated instruments [1]. However, extending scan time is not
advisable because the patient is required to keep still for long time during scanning, while the use of more
sophisticated instruments obviously causes imaging cost increase. The purpose of image super-resolution
(SR) reconstruction [2] is to obtain a high-resolution (HR) image from low-resolution (LR) data through
image processing techniques, which is more promising in improving brain MRI image quality.
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SR reconstruction has a wide application in medical imaging [3], satellite imaging [4], security [5]
and other fields. SR methods are divided into two main types: non-learning and learning. Non-learning
methods are limited to requirement of prior knowledge. In contrast, learning-based methods obtains the
prior knowledge directly from training samples [8–10] during learning process without assumption of
the data distribution. In non-learning methods, linear interpolation methods such as bilinear and bi-cubic
approaches [6,7] are often used for SR. These methods are easy in implementation, however, they usually
yield solutions with overly smooth textures. In learning methods, the sparse-coding-based method [9] is
one of the important external example-based SR methods with assumption that the patches of HR and
LR images have the same coefficients in sparse representation on their respective dictionaries, and an
optimization problem is solved for generation of the final dictionaries. The solution is shared by most
external example-based approaches, which are particularly focus on optimization of the dictionaries or
establishment of efficient mapping formulations. However, this type of algorithm is based on certain prior
conditions and the reconstruction result depends heavily on cumbersome parameter adjustment, resulting
in a slow optimization for image reconstruction.

Since a shallow Convolutional Neural Network (CNN) was developed by Dong et al. [11], deep
learning based algorithms have become more and more popular recently because of their superior ability
in SR reconstruction. Based on SRCNN, the VDSR model was proposed by Kim [12] and obtain the
reconstructed results in high quality. Dong et al. [13] proposed FSRCNN in which the low-resolution
image with original size is directly used as input and the image is enlarged by the de-convolutional layer
as the output, so as to speed up the network calculation. Lim et al. [14] constructed a very wide network
EDSR by simplifying the residual blocks in residuals network (ResNet). Haris et al. proposed DBPN [15]
through up and down projection to realize feature reuse. Zhang et al. [16] presented RDN in combination
of residual and dense connections for improvement of the network performance. However, these networks
such as EDSR and RDN require a large number of parameters. The recurrent structure can effectively
make the network light-weighted. Specifically, DRCN [17] and DRRN [18] are regarded as a single-state
RNN in which the information is shared in a feedforward manner with recurrent structure. For MRI image
SR, many deep learning-based approaches have been developed. For instance, Schlemper et al. [19] used
a deep cascade network to reconstruct dynamic MRI images. Shi et al. [20] built a wide residual network
for SR reconstruction using fixed skip connections. However, these networks belong to feedforward
frameworks, in which the shallow layers hardly access useful information from the deep layers. Recent
studies [21,22] have applied a feedback connection to the network, which transmit high-level signals to
low-level layers and refine low-level information.

The feedback mechanism [21] is essentially implemented based on recurrent neural networks (RNNs).
Although optimization operations such as partial connection and weight sharing can solve the long-
distance dependence problem in recurrent neural networks, the information “memory” ability is still
limited. In other words, the convolution in these optimization operations only extracts local features,
without consideration of image global relationship, which makes the HR results short of hierarchy.
Recently, the self-attention mechanism (SAM) is more reasonable in establishing global relationship in
many fields [23,24], allowing for measurement of the dependences between image positions with large
distance.

To address the above issues, we propose a feedback network with SAM (FNSAM) for brain MRI
imagine SR reconstruction. The feedback mechanism is implemented using RNN hidden states that at
each iteration flows into the next iteration for modulation of the input features. The SAM is adopted to
achieve the dependence among image pixels for reconstruction of the corresponding image using the
global features. Our contributions are mainly described as follows:
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1) The feedback mechanism is incorporated into the network such that the deep information is carried
back to previous layers, which rescales the shallow feature information.

2) SAM is combined with the feedback network to generate more detailed information by capturing
the global dependences from the high-level features of the image.

3) The proposed FNSAM achieves more correct texture details than many other SR methods.

2. Related work

2.1. Feedback mechanism

For various vision tasks, the feedback mechanism has been explored by many network for carrying a
notion of output to correct previous states, such as classification [21], human pose estimation [25], and
other fields [26,27]. These methods have a top-down feedback mechanism by using RNN structure. The
SRFBN [22] is the first use of feedback mechanism in image SR, which concatenates the deep features
of the previous iteration into the coarse feature extraction of current iteration. However, these methods
directly transmit the high-level information to low-level layers, which lacks the ability to extract global
features. SAM is focus on the key features for improvement of information representation. Therefore, in
our method, the SAM is added to feedback network for extracting important features in feedback stage.
Furthermore, the residual learning and dense skip connection are combined to build a rich image feature
mapping of the network.

2.2. SAM

The purpose of the attention mechanism is to focus on the details rather than the overall analysis.
In recent years, spatial and channel attention mechanism has been applied to image super resolution
reconstruction with promising results. Since the attention mechanism ensures that the input and output
sizes remain the same, this design can be easily combined into a deep neural network for capturing
dependencies in long-distance. For example, Zhang et al. proposed to use residual channel attention
network to model channel correlation [28]. Dai et al. applied shifting channel attention to second-order
attention enhancement [29]. Different from spatial and channel attention mechanisms, SAM exhibits
promising in modeling global dependency. The SAM [30,31] can establish the dependency relationship
between the current concerned local location and all positions in the image, that is, the weighted
dependency feature map of all local pixels in the image can be obtained while keeping the global features
of the image. The brain MRI image exhibits non-local similarity which causes difficulty in capturing
more efficient high-frequency information for super resolution reconstruction. This paper proposes to
embed the SAM into the feedback network for paying attention to the weight between the pixels of the
image itself, so as to enhance the expression ability of deep features in the feedback network.

3. Method

3.1. FNSAM framework

Generation of a feedback network calls for several conditions. Firstly, for routing the feedback infor-
mation into the input at next time step, the network should be recurrent over time. Secondly, to obtain the
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Fig. 1. The structure of our FNSAM.

consistency between the output and input conditions, the feedback information flow is required to have
the output image feature. Thirdly, the feedback information and low-level features are combined to be
the total input. RNN is a necessary condition of feedback mechanism, in which the recurrent structure is
used to achieve iterative process with a LR input provided at each time step for availability of low-level
information and the loss is calculated to force the network to reconstruct a SR image that guides the LR
image to restore a better SR result.

The proposed FNSAM is built by RNN with time steps of T, which is shown in Fig. 1. T sub-networks
are contained in our unrolled FNSAM. Each sub-network can be regarded independent at a specific time
step which consists of three parts with parameters shared across time steps: the input unit, feedback unit
and the output unit.

The input unit is the feature extraction stage, which includes two convolution layers for extraction of
initial low-level features. The first and the second layers hold 3 × 3 and 1 × 1 convolutional kernels,
respectively.

Given ILR as the input image at the t-th time step, the initial low-level feature xt can be obtained by

xt = fin(ILR), (1)

where fin denotes the function of the input unit. Then the extracted low-level feature xt is fed to feedback
unit to learn more deep features.

The feedback unit is the nonlinear feature mapping stage, which consists of multiple residual dense
blocks (RDBs) and a self-attention module (SAM). Multiple RDBs are used to form a better features
extraction hierarchy. The SAM receives high-level information from feedback connections and extract the
attention maps for further refining the low-level features. In the feedback mechanism, the SAM is used to
find the principle features ht as the signal of recurrent time step t. Then, the high-level information ht at
the t-th time step can be formulated as follows:

ht = frdb([x
t, ht−1

a ])(t > 1), (2)
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where frdb represents the operation of multiple RDBs, [xt, ht−1
a ] denotes concatenation of xt and ht.

The output unit is the image reconstruction stage, including a de-convolutional layer and a convolutional
layer. The deconvolutional layer is used to upscale the high-level features and the convolutional layer
with 3 × 3 sized is adopted to recover a residual image ItRes at the t-th time step. At the same time, the
original LR image is interpolated by bilinear and combined with the residual image to obtain the SR
image ItSR at the t-th time step with formulation as:

ItSR = fo(h
t) + fup(ILR), (3)

where fo and fup refer to the function of the output unit and interpolated kernel, respectively.
During each time step, L1 loss is adopted to optimize the network and the loss Lt of t-th time step is

calculated as:

Lt = ‖ItG − ItSR‖1, (4)

where ItG and ItSR refer to the ground truth and the reconstruction SR image at the t-th time step,
respectively. Thus, the whole loss L1 can be formulated as

L1 =
1

T

T∑
t=1

(WtLt), (5)

where Wt represents the weight of t-th loss function and the Wt is set to 1 which represents each output
has equal contribution.

3.2. Feedback unit

The structure of feedback unit is shown in Fig. 2. Stacking more RDBs will provide more various
sizes of receptive field in each sub-network, which leads to a better hierarchy of extracted features. The
HR image at the current time step is reconstructed using these features and the low-level features at the
next time step are further modified. Because RDBs generate a large number of features and convolution
is limited to local feature, the SAM is cooperated with feedback mechanism which can capture global
dependencies and improve the accuracy of features.

The high-level features ht−1 at t − 1-th time step are served as the input of the SAM to generate
important features ht. The RDBs simultaneously receives the low-level features xt of the input unit and
the output ht of the SAM at t-th time step. Supposing there are r RDBs, the output ur of the r-th RDB
can be obtained by

ur =

{
f1rdb(u

0) = f1rdb([x
t, ht−1

a ])(t > 1, r = 1),
f rrdb(f

r−1
rdb (· · · (f2rdb(u

1)) · · ·))(t > 1, r > 1),
(6)

where f rrdb refers to the operations of the r-th RDB, [xt, ht−1
a ] represents the concatenation of xt and

ht−1
a .
The architecture of RDB is shown in Fig. 2b which is the same as the one in [16]. It contains dense

connected layers, feature fusion and local residual learning. For each convolution layer, firstly, multiple
trainable kernels are used to convolve the feature map of previous layer for extraction of the more
informative features and generation of this layer feature maps. Then the activation function is used to
non-linearize the convolutional result to yield more complex characteristics. The output url of the l-th
convolutional layer of the r-th RDB is described as:

url = f(wrl [u
r−1, ur1, · · · , url−1]), (7)
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Fig. 2. The proposed feedback unit with RDB and self-attention module.

where f(·) is the activation function, wrl denotes the weights of the l-th convolutional layer of the r-th
RDB, [ur−1, ur1, · · · , url−1] represents the operation of concatenation. Since many features are generated
by RDB, converting features into low-level features requires a lot of parameters and computational
burden. Therefore, a 1 × 1 convolutional kernel is used to compress the features which can be formulated
as

urc = f rconv([u
r−1, ur1, · · · , urL]), (8)

where f rconv denotes the function of the 1 × 1 convolutional layer in the r-th RDB and L is the number
of layers in each RDB. In order to alleviate the problem of network gradient vanishing, local residual
learning is used. Therefore, the output of the r-th RDB is calculated as:

ur = ur−1 + urc, (9)

3.3. Self-attention module

The self-attention module is divided into three branches, which decompose the input data into three
components: θ, φ and g. θ and φ are used to study the global dependency relationship between the
characteristics. g is used to extract the deep features of the input feature maps. Then the global dependency
and deep features are fused to enhance the capacity of characteristics graph representation.

For the feature maps x, the attention map s(x) can be calculated as:

s(x) = softmax(θ(x)Tφ(x)), (10)

where θ(x) = Wθx, φ(x) = Wφx, θ(x)Tφ(x) represents the dot product operation of the matrix, T
refers to the transpose of the matrix, and the weights between two positions of input feature map x are
computed by performing the softmax on each row of the result. The attention map s(x) is built using
these weights for description of the similarity between θ(x) and φ(x).
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Table 1
The settings for deconvolutional layer

Scale factor Kernel size Stride Padding
× 2 6 2 2
× 3 7 3 2
× 4 8 4 2

Then, the attention map s(x) and feature map g(x) are multiplied, which is added with the input feature
maps x via the skip connection to get the output self-attention feature maps O(x). The calculation process
is

O(x) =Ws(s(x)g(x)) + x, (11)

where g(x) = Wgx. In the above formulation, Wθ, Wφ, Wg and Ws are the learned weight matrices,
which are implemented as 1 × 1 convolutions.

It can be seen from the above description that the SAM model can focus on the pixel data of the whole
area of the image. When integrated with deep features, the SAM can easily capture the main features in
the whole spatial domain and enrich the context dependence according to the self-attention features.

4. Experimental and results

4.1. Datasets and training settings

Medical images used in this paper are from the brain MRI dataset in The Cancer Imaging Archive
(TCIA) [32] public database. We randomly select 80 representative images as the training dataset and 44
images as the test dataset which is divided into Test1 (8 images), Test2 (14 images) and Test3 (22 images).
Data enhancement is performed on the selected training set using rotation and flips [33]. Specifically,
the original images are rotated by 90◦, 180◦, 270◦ and reduced to 0.6, 0.7, 0.8 times of the original size.
Then, we obtain 16-fold images, for a total of 1280 training images.

The first layer has 256 convolutional kernels and 64 RDBs. Because our purpose is to reconstruct
MRI images, the number of input and output channels can be set to 1. Same as RDN [16], per RDB
has 8 convolutional layers. The kernel size, stride, and padding of all convolutional layers in RDBs and
the convolutional layer in output unit are set to 3, 1, and 1, respectively which can keep size fixed. A
PReLU [35] activation function is used to follow all convolutional layers except the last convolutional
layer of each RDB and the sub-network. The de-convolutional layer is set for each upscale factor as
shown in Table 1.

The training image is divided into 48 × 48 small blocks and the step size 48 is used to increase the
image receptive field. For self-attention module, we use 1 × 1 kernels with stride 1 and pad 1. Each
weighting layer has 64 convolutional kernels of size 3 × 3. The minimum batch size is 16. For × 2 and ×
3 scale factor, the LR input patch size is 40. For× 4 scale factor, the LR input patch size is 32. In addition,
the Adam algorithm [34] is applied for gradient optimization with the initial learning rate 0.0001. We
make the learning rate halved for each 2 × 105 iterations. Experiment is implemented on a workstation
with a GTX 1080Ti GPU and the memory of 11 GB under the software environment of Ubuntu 16.04 and
MATLAB. To qualitatively evaluate the effectiveness of different methods, two image quality evaluation
indexes, peak signal-to-noise ratio (PSNR) [35] and structural similarity index measure (SSIM) [36] are
adopted in this paper. The higher PSNR and SSIM indicate the more reasonable SR quality.
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Table 2
The results of strategic ablation

Methods Combination of methods
Feedback network ×

√ √

SAM × ×
√

PSNR 32.64 33.13 33.16
SSIM 0.9027 0.9103 0.9104

Table 3
The average results of different number of RDBs
on TEST3 with scaling factor × 4

R 4 5 6 7
PSNR 33.14 33.18 33.16 33.17
SSIM 0.9102 0.9105 0.9105 0.9105

Table 4
The average results of different time step on TEST3
with scaling factor × 4

T 2 3 4 5
PSNR 33.11 33.14 33.18 33.17
SSIM 0.9098 0.9101 0.9105 0.9104

4.2. Ablation analysis

To verify the effectiveness of feedback network and SAM, ablation analysis is performed. As shown
in Table 2, the results of PSNR and SSIM on Test3 with upscale 4 reveal the advantage of feedback
network and SAM. In the second group, it can be seen that using feedback network would perform
better than the first group. This is mainly because RNN based feedback mechanism can reduce the errors
occurring at each preceding time step. This further shows that the output feature map containing advanced
information in the t-th iteration will prompt the previous layers to generate better representations in
subsequent iterations. In the third group, the SAM is added in feedback network which can improve the
performance. It is because the global weight distribution learned chooses more useful features to be the
signal of feedback.

4.3. R and T analysis

The RDB number (denoted as R) and the time step number (denoted as T) are studied. Firstly, we
construct various networks FNSAM-S (R = 4), FNSAM-M (R = 5), FNSAM-L (R = 6) and FNSAM-L+
(R = 7) by fixing T to 4. The performance of different number of RDBs on Test3 is illustrated in Fig. 3.
Generally speaking, performance will get better as the network depth increases. However, it can be found
that the red line (R = 5) is higher than the blue line (R = 6) and the yellow line (R = 7). The average
results of on 4 × enlargements are shown in Table 3. The network performance is basically saturated
when the R is larger than 5. Considering that the difference of PSNR between FNSAM-M and FNSAM-L
networks is only 0.02 dB, FNSAM-M (R = 5) is chosen for the time step analysis.

Under identical setting of R = 5, we set T = 2, 3, 4, and 5, respectively. Figure 4 shows the convergence
of T on Test3 with scaling factor × 4. Table 4 shows the specific numerical comparison. According to the
two groups results, we can observe that the quality of reconstruction keeps rising with an increase of T
except for a slight decrease when T = 5. This indicates the feedback mechanism contributes to the flow
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Fig. 3. The convergence analysis of R.

Fig. 4. The convergence analysis of T.

of information across time. Therefore, we choose T = 4 and R = 5 to balance the reconstruction quality
and the computational complexity.

4.4. Comparison with the state-of-the-arts

The proposed SR algorithm is compared with the current classical algorithms including ScSR [9],
SRCNN [11], VDSR [12], EDSR [14], D-DBPN [15], RDN [16] and SRFBN [22] methods. Tables 5 and
6 show the average PSNR and SSIM for scale factor× 2,× 3 and× 4 on Test1, Test2, Test3, respectively.
Compared with the classical algorithms, our method is obviously higher than those of all the compared
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Table 5
Average PSNR for scale factor × 2, × 3 and × 4 on TEST1, TEST2, TEST3. the best result are in bold

Dataset Scale Bicubic ScSR SRCNN VDSR EDSR D-DBPN RDN SRFBN FNSAM
(ours)

Test1 × 2 37.11 38.06 40.20 40.67 40.75 40.68 41.37 41.51 41.57
× 3 31.80 32.07 33.36 34.38 34.82 – 34.96 35.24 35.16
× 4 28.74 29.47 30.36 31.17 31.66 31.50 31.75 31.86 32.02

Test2 × 2 38.06 39.56 40.90 42.06 42.47 42.20 42.34 43.44 43.47
× 3 32.84 33.51 34.26 35.99 36.24 – 36.84 37.08 37.23
× 4 29.91 31.25 31.72 32.73 33.08 32.87 33.52 33.68 33.87

Test3 × 2 37.69 39.01 40.65 41.79 41.85 41.82 42.59 42.73 42.78
× 3 32.44 32.98 33.93 35.41 35.70 – 36.21 36.38 36.54
× 4 29.45 30.59 31.22 32.16 32.56 32.34 32.83 33.02 33.18

Table 6
Average SSIM for scale factor × 2, × 3 and × 4 on TEST1, TEST2, TEST3. the best result are in bold

Dataset Scale Bicubic ScSR SRCNN VDSR EDSR D-DBPN RDN SRFBN FNSAM
(ours)

Test1 × 2 0.9672 0.9755 0..9829 0.9838 0.9847 0.9840 0.9868 0.9876 0.9869
× 3 0.8998 0.9174 0.9300 0.9372 0.9392 – 0.9413 0.9428 0.9439
× 4 0.8202 0.8460 0.8543 0.8732 0.8800 0.8758 0.8833 0.8856 0.8868

Test2 × 2 0.9720 0.9796 0.9833 0.9859 0.9869 0.9863 0.9877 0.9886 0.9887
× 3 0.9203 0.9356 0.9401 0.9497 0.9526 – 0.9554 0.9605 0.9600
× 4 0.8617 0.8745 0.8900 0.9115 0.9139 0.9117 0.9208 0.9236 0.9243

Test3 × 2 0.9701 0.9782 0.9832 0.9851 0.9860 0.9858 0.9867 0.9879 0.9881
× 3 0.9128 0.9290 0.9331 0.9469 0.9477 – 0.9521 0.9537 0.9545
× 4 0.8466 0.8605 0.8767 0.8976 0.9015 0.8985 0.9061 0.9093 0.9105

methods both in PSNR and SSIM. For different up-sampling factors, the PSNR and SSIM values of our
method are slightly higher than the SRFBN in some test images. For scale factor × 4 on Test3, the PSNR
produced by the proposed method is 2.59 dB, 1.96 dB, 1.02 dB, 0.62 dB, 0.84 dB, 0.35 dB and 0.16 dB
higher than that of ScSR, SRCNN, VDSR, EDSR, D-DBPN, RDN and SRFBN, respectively, while the
increase of SSIM is 5.81%, 3.85%, 1.43%, 0.99%, 1.33%, 0.49% and 0.13%, respectively.

Figure 5 gives the visualization of SR results using different methods. As shown in these figures,
details are lost obvious in SR reconstruction produce by the bicubic interpolation. The proposed FNSAM
alleviates the distortions and generates more accurate details in SR images compared with other methods.
For example, the pattern in Fig. 5a is supposed to a vertical line. Affected by the surrounding stripe on the
original image, other SR methods tend to reconstruct the curved pattern, and the proposed FNSAM can
reconstruct the pattern correctly. In Fig. 5b and c, the proposed FNSAM can reconstruct the more obvious
detail than others. In other words, our methods can recover clearer edges and more textures which are
close to HR medical image than the comparison methods.

4.5. Network performance and parameters

Figure 6 shows the comparison between the performance and parameters of some advanced SR methods
and the proposed method on Test3 with upscale 4. As can be seen that parameters of SRCNN, VDSR and
SRFBN methods are fewer but with lower PSNR than our proposed model. Our FNSAM achieves better
performance and fewer parameters than D-DBPN, RDN and EDSR methods. This is attributed to the
ability of RNN structure to decrease the parameters of the network.
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Fig. 5. Visual results of different SR approaches for different scale factors.

Fig. 6. Performance and number of parameters.
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5. Conclusion

In this paper, we have proposed a network called feedback network with self-attention mechanism
(FNSAM) for SR reconstruction of brain MRI images. The feedback network is constructed according to
the principle of recurrent neural network. By using the feedback function of the feedback network, the
high-level information output from the network is returned to the low-level layers to optimize the shallow
information. Moreover, the self-attention module is added in the feedback network to extract the principle
features which promotes the visual hierarchy impress. The proposed FNSAM is capable of obtaining more
natural HR brain MRI images. Quantitative and qualitative evaluation shows its advantages over those
compared approaches. In further, we will be focus on study of SR networks for arbitrary magnification
based on meta-learning.
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