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Abstract.

BACKGROUND: 251 BT is an effective radiotherapy for prostate cancer. However, comparison data of GI and GU toxicities
between BT, BT + EBRT, and EBRT-alone patient groups is limited.

OBJECTIVE: To define the GI and GU toxicities in prostate cancer to prevent adverse events after treatment.

METHODS: We searched published studies in PubMed, Cochrane, and Embase databases up to December 31, 2022. The
endpoints were the RRs of GI and GU toxicities. Pooled data were assessed using a random-effects model.

RESULTS: Fifteen eligible studies were included into this analysis. LDR-BT had significantly lower RRs than LDR-BT +
EBRT for acute GI (2.13; 95% CI, 1.22-3.69; P = 0.007) and late GI toxicities (3.96; 95% CI, 1.23-12.70; P = 0.02).
Moreover, EBRT had significantly higher RRs than LDR-BT for acute GU (2.32; 95% CI, 1.29—4.15; P = 0.005) and late GU
toxicities (2.38; 95% CI, 1.27-4.44; P = 0.007). HDR-BT had significantly higher RRs for acute GU toxicities than LDR-BT
alone (0.30; 95% CI, 0.23-0.40; P < 0.00001).

CONCLUSION: The results implied that BT with and without EBRT can result in both GI and GU toxicities in patients with
prostate cancer, with LDR-BT leading to a poorer urinary function than EBRT.
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1. Introduction

Prostate cancer is malignant tumor worldwide that threatens the health of older men [1]. Currently,
transperineal interstitial permanent (Iodine) '2°I-brachytherapy (BT) with or without EBRT is an effective
and widely used treatment for localized prostate cancer [2]; this is because BT provides a good conformal
dose distribution to the prostate [3]. Moreover, the oncologic outcomes of permanent BT are similar to
those of surgical treatment and EBRT, and BT has low toxicity rates [4].

BT is a recommended monotherapy for low-malignant prostate cancer and boost for intermediate-
and high-risk prostate cancer [5—8]. The incidence of gastrointestinal (GI) and genitourinary (GU) toxic
adverse events (AEs) varies with the choice of treatment. Given that the outcomes of BT, RP, and EBRT
are similar, the prognosis accuracy, selection of a treatment regimen, and risks of GI and GU toxicities
during and after radiotherapy (RT) are important. GI and GU toxicities from RT options should be
considered because of their impact on patients’ health [9,10]. The concern with BT is its toxicity to
nearby organs and tissues, particularly with respect to GI and GU health [11].

An optimal therapeutic outcome would include maximal survival benefits with low GI and GU toxicities.
Several clinical studies have indicated that BT, EBRT, and their combined therapy may be associated with
a high prevalence of different GI and GU toxicities. However, there is no meta-analysis of recent clinical
studies. Therefore, we assessed the risks of GI and GU toxicities from BT, EBRT, and combined-treatment
use in men with prostate cancer.

2. Materials and methods
2.1. Literature search

This systematic review and meta-analysis followed the Preferred Reporting Items for System-
atic Reviews and Meta-Analyses (PRISMA) statement and was registered at PROSPERO (Number:
CRD42021249602) [12].

The literature was searched in Cochrane Library, PubMed and Embase databases up to December
31, 2022. The following Mesh keywords were used during the search: “prostatic neoplasms,” “prostatic
intraepithelial neoplasia,” “brachytherapy,” “lodine-125,” “I-125,” and “1251.”

2.2. Inclusion and exclusion criteria

The inclusion criteria for clinical studies were as follows: only cohort studies in adult men with localized
prostate cancer; no lymph node involvement; no distant metastases; comparisons between 1251 BT, EBRT,
and '?°I-BT combined with EBRT; reported AEs involving acute and late post-treatment GI and GU toxic
complications (CTCAE or RTOG) [13-15] during follow-up visits; and types of EBRT radiation treatment
including intensity-modulated radiation treatment, 2-dimensional conventional radiation treatment and
3-dimensional conformal radiation treatment. Studies with incomplete data were excluded.

2.3. Data extraction

Studies were extracted by two reviewers independently to identify eligible studies. A third reviewer
arbitrated any disagreements. These data included year of publication, first author, country of origin,
study design, enrollment period, type of the patients, sample sizes, type of interventions, follow-up time,
and details of toxic outcomes. The endpoints of GI and GU toxic complications were defined as AEs
based on the CTCAE or RTOG. Only events greater than grade 2 were considered.
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2.4. Quality assessment

The Newcastle-Ottawa scale (NOS) to evaluate the quality of the clinic studies. Quality assessment
included measurement of exposure factors, among-group similarity, and patient selection. Any disagree-
ment was resolved by consensus. Studies with NOS scores > 6 were considered as high-quality and
studies with NOS scores < 6 were considered as low-quality.

2.5. Statistical analysis

A pooled estimate of the differences in risk for the single studies was calculated using a random-effect
model base on the Mantel-Haenszel method; the results of studies are illustrated using forest plots.
Dichotomous parameters were expressed as risk ratios (RRs). All results of studies were presented
with a 95% confidence interval (95% CI). Homogeneity within the data of each study was assessed
using a chi-square test, setting the degrees of freedom to the number of analyzed studies minus one.
Heterogeneity was observed with the Cochran Q test and I? statistics, which quantifies inconsistency
across studies to assess the impact of meta-analysis heterogeneity. An I? statistic above 50% indicates
significant heterogeneity. Heterogeneity was assessed using sensitivity analysis. Analyses of all gathered
data were conducted with Review Manager Version 5.3 (Cochrane, London, United Kingdom).

3. Results
3.1. Study selection

We identified 16 213 potentially relevant studies. After removing 4407 duplicate studies, the title
and abstract of the remaining 11 806 studies were assessed. Of these, 11 745 studies removed without
inclusion criteria. Finally, 15 studies were included in the meta-analysis (Fig. 1): four prospective cohort
studies and 11 retrospective cohort studies [16-30].

3.2. Study characteristics

Of the 12 773 patients in the included studies, 9405 were treated with LDR-BT, 2468 were treated
with LDR-BT + EBRT, 379 were treated with HDR-BT, and 900 were treated with EBRT. GI toxicity
was reported in 14 studies, and GU toxicity was reported in 10 studies. The relative risks of GI and GU
toxicities were assessed during follow-up visits. The clinical characteristics and relevant results of all
studies are summarized in Table 1 and NOS scores of the 15 studies are shown in Table 2.

3.3. Meta-analysis of GI toxicities between LDR-BT and LDR-BT + EBRT

3.3.1. Acute and late GI toxicity

A meta-analysis of six studies [20,22-24,26,29] revealed that the RR of acute GI toxic complications
from LDR-BT was significantly lower than that from LDR-BT + EBRT (2.13; 95% CI, 1.22-3.69; P =
0.007) (Fig. 2a).

A meta-analysis of 11 studies [16,19-27,29] revealed that the RR of late GI toxic complications from
LDR-BT was significantly lower than that from LDR-BT + EBRT (3.96; 95% CI, 1.23-12.70; P = 0.02)
(Fig. 2b).
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Potentially relevant papers identified
n=16213

*PubMed n=4781

* Cochrane n =156

* EMBASE n = 11276

% Duplicates excluded n=4407

Titles and abstracts

stzansil firies Al Studies excluded n=11745
n = 11806 \
. Mela—analyses, case series, Case—l‘eporls,

editorials, letters, guidelines, reviews,
animal studies, exposure or endpoint was
not relevant to our analysis n=11745

Potentially appropriate studies to
be included in systematic review
n=061

Studies excluded n=40

« Conference abstracts n=11
» Non-English article n=1

* Incomplete data n=28

Studies included in systematic review
n=21

Studies excluded from meta-analysis n=6
« No result on toxicity outcome(=2) n=6

Studies included in
meta-analysis
n=15

Fig. 1. Study selection. Flow diagram summarising selection of studies that meet inclusion criteria.

3.4. Meta-analysis of GU toxicities between LDR-BT and LDR-BT + EBRT

3.4.1. Acute and late GU toxicity

A meta-analysis of six studies [18,20,23,24,26,29] revealed that there was no significant difference
in the RR of acute GU toxic complications between LDR-BT and LDR-BT + EBRT (0.65; 95% (I,
0.23-1.83; P = 0.41) (Fig. 3a).

A meta-analysis of six studies [20,23-26,29] revealed that there was no significant difference in the RR
of late GU toxic complications between LDR-BT and LDR-BT + EBRT (1.18; 95% CI, 0.85-1.62; P =
0.32) (Fig. 3b).

3.5. Heterogeneity analysis of LDR-BT and LDR-BT + EBRT studies

Six studies reporting acute GI toxicity did not present heterogeneity (P > 0.1; I < 50%). A random-
effect model was selected for the analysis. An independent SA was performed after excluding two
studies [22,24]. The four assessed studies showed different results, indicating that our research results
were unstable (Table 3). Due to the high heterogeneity among studies reporting late GI toxicity, SA was
performed after excluding one article [19]. The other 10 studies showed different results (5.60; 95% CI,
3.63-8.65; P < 0.001; I? = 38%) (Table 4), indicating that our research results were unstable.
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LDR-BT+EBRT LDR-BT Risk Ratio Risk Ratio
Study or Subgroup Events Total Events Total Weight M-H, Random, 95% CI M-H, Random, 95% CI
a acute Gl toxicity
Katayama, 2016 et al. (22) 9 546 15 1790 42.1% 1.97 [0.87, 4.47] i
Mukai, 2018 et al. (23) 0 60 0 45 Not estimable
Ohashi, 2015 et al. (24) 9 546 15 1790 42.1% 1.97 [0.87, 4.47] i
Tanaka, 2013 et al. (26) 1 63 0 155 3.0% 7.31[0.30, 177.14] ]
Yamazaki, 2018 et al. (20) 2 68 0 418 33% 30.36 [1.47, 625.70]
Zelefsky, 2008 et al. (29) 2 127 3 216 9.5% 1.13[0.19, 6.69] -
Subtotal (95% Cl) 1410 4414 100.0% 2.13[1.22, 3.69] &>
Total events 23 33
Heterogeneity: Tau? = 0.01; Chi? = 4.11, df = 4 (P = 0.39); > = 3%
Test for overall effect: Z = 2.68 (P = 0.007)
b Iate Gl toxicity
Kalakota, 2010 et al. (27) 9 48 6 62 9.7% 1.94 [0.74, 5.07] T
Katayama, 2016 et al. (22) 27 539 16 1773 10.1% 5.55[3.01, 10.22] -
Maki, 2017 et al. (21) 12 29 5 271 97% 22.43[8.50, 59.19] =
Mukai, 2018 et al. (23) 2 60 0 45 6.1% 3.77 [0.19, 76.66] -
Ohashi, 2015 et al. (24) 27 539 16 1771 10.1% 5.54[3.01, 10.21] -
Sutani 2015 et al. (25) 12 295 5 379 96% 3.08[1.10, 8.66] s
Tanaka, 2013 et al. (26) 4 63 2 155 85% 4.92[0.92, 26.19] |
Taniguchi, 2020 et al. (16) 7 120 1 178 7.8% 10.38[1.29, 83.32] I
Tomoki, 2018 et al. (19) 17 955 136 1261 10.2% 0.17[0.10, 0.27] -
‘Yamazaki, 2018 et al. (20) 4 68 4 418 9.1% 6.15[1.57, 24.00] -
Zelefsky, 2008 et al. (29) 12 127 3 216 9.3% 6.80 [1.96, 23.65] I
Subtotal (95% Cl) 2843 6529 100.0% 3.96 [1.23, 12.70] i
Total events 133 194
Heterogeneity: Tau* = 3.41; Chi* = 166.63, df = 10 (P < 0.00001); I = 94%
Test for overall effect: Z = 2.31 (P = 0.02)
0.001 0.1 1 10 1000

Fig. 2. (a) Forest plot of RR for acute GI toxicity following LDR-BT + EBRT and LDR-BT. (b) Forest plot of RR for late GI

toxicity following LDR-BT + EBRT and LDR-BT.

LDR-BT+EBRT LDR-BT

Risk Ratio

M-H, Random, 95% CI

Favours [experimental]

Favours [control]

Risk Ratio
M-H, Random, 95% CI

Study or Subgroup Events Total Events Total Weight
a acute GU toxicity

Mukai, 2018 et al. (23) 59 60 45 45 17.5%
Ohashi, 2015 et al. (24) 20 547 152 1790 16.9%
Tanaka, 2013 et al. (26) 4 63 9 155 14.5%
Tanaka, 2019 et al. (18) 20 547 152 1792 16.9%
Yamazaki, 2018 et al. (20) 32 68 178 418 17.3%
Zelefsky, 2008 et al. (29) 15 127 74 216 16.8%
Subtotal (95% CI) 1412 4416  100.0%
Total events 150 610

Heterogeneity: Tau? = 1.62; Chi* = 331.18, df = 5 (P < 0.00001); I* = 98%
Test for overall effect: Z=0.82 (P =0.41)

b late GU toxicity

Mukai, 2018 et al. (23) 5 60 5 45  6.2%
Ohashi, 2015 et al. (24) 26 539 107 1771 22.6%
Sutani 2015 et al. (25) 50 295 53 379 25.3%
Tanaka, 2013 et al. (26) 13 63 14 155 13.5%
Yamazaki, 2018 et al. (20) 10 68 69 418 157%
Zelefsky, 2008 et al. (29) 20 127 20 216 16.7%
Subtotal (95% CI) 1152 2984 100.0%
Total events 124 268

Heterogeneity: Tau® = 0.07; Chi* = 9.73, df = 5 (P = 0.08); I’ = 49%
Test for overall effect: Z=0.99 (P = 0.32)

Fig. 3. (a) Forest plot of RR for acute GU toxicity following LDR-BT + EBRT and LDR-BT. (b) Forest plot of RR for late GU

toxicity following LDR-BT 4 EBRT and LDR-BT.

0.99 [0.94, 1.04]
0.43[0.27, 0.68]
1.09 [0.35, 3.42]
0.43[0.27, 0.68]
1.11 [0.84, 1.46]
0.34[0.21, 0.57]
0.65 [0.23, 1.83]

0.75[0.23, 2.44]
0.80 [0.53, 1.21]
1.21[0.85, 1.73]
2.28[1.14, 4.58]
0.89 [0.48, 1.64]
1.70 [0.95, 3.04]
1.18 [0.85, 1.62]

0.

1

0.2

0.5 1 2

Favours [experimental] Favours [control]

5

10
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Table 3
Sensitivity analysis (acute GI toxicity)

RR  95%CI p Qp I

All studies 213  1.22-3.69 0.007 0.39 3%
Selected study omitted

Yamazaki et al. [20], 2018  1.94 1.13-3.34  0.02 0.8 0%
Katayama et al. [22], 2016  2.58 0.92-7.27 0.07 025 26%
Mukai et al. [23], 2018 213  1.22-3.69 0.007 0.39 3%
Ohashi et al. [24], 2015 258 0.92-727 0.07 025 26%
Tanaka et al. [26], 2013 207 1.11-3.86 0.02 032 14%
Zelefsky et al. [29], 2008 238 1.21-4.68 0.01 031 17%

Table 4
Sensitivity analysis (late GI toxicity)
RR 95% CI p Q) 2

All studies 396 1.23-12.7  p < 0.00001 0.02 94%
Selected study omitted

Taniguchi et al. [16], 2020  3.65 1.07-12.41 p < 0.00001 0.04 95%
Tomoki et al. [19], 2018 5.60 3.63-8.65 0.11 p < 0.00001  38%
Yamazaki et al. [20], 2018  3.79  1.10-13.13 p < 0.00001  0.04 94%
Maki et al. [21], 2017 327 1.01-10.59 p < 0.00001 0.05 93%
Katayama et al. [22],2016  3.83  1.03-14.23 p < 0.00001 0.03 94%
Mukai et al. [23], 2018 397 1.18-1335 p < 0.00001 0.03 95%
Ohashi et al. [24], 2015 3.83 1.03-1423 p < 0.00001 0.04 94%
Sutani et al. [25], 2015 4.08 1.14-14.64 p < 0.00001 0.03 95%
Tanaka et al. [26], 2013 3.88 1.13-13.38 p < 0.00001 0.03 95%
Kalakota et al. [27],2010  4.29 1.18-15.57 p < 0.00001 0.03 95%
Zelefsky et al. [29], 2008 375 1.08-13.08 p < 0.00001 0.04 94%

3.6. Meta-analysis of GI and GU toxicities between LDR-BT and EBRT

3.6.1. Acute and late GI toxicity

A meta-analysis of two studies [28,30] revealed that there was no significant difference in the RR of
acute GI toxic complications between LDR-BT and EBRT alone (0.75; 95% CI, 0.21-2.74; P = 0.66) (S:
Fig. 4a). The number of studies for this analysis was insufficient for an SA. And a meta-analysis of three
studies [17,25,30] revealed no significant difference in the RR of late GI toxic complications between
LDR-BT and EBRT alone (0.50; 95% CI, 0.10-2.48; P = 0.39) (S: Fig. 4b). The number of studies for
this analysis was insufficient for an SA.

3.6.2. Acute and late GU toxicity

A meta-analysis of two studies [28,30] revealed that the RR of acute GU toxic complications from
EBRT was significantly lower than that from LDR-BT alone (2.32; 95% CI, 1.29-4.15; P = 0.005) (S:
Fig. 5a). The number of studies for this analysis was insufficient for an SA. And a meta-analysis of three
studies [17,25,30] revealed that the RR of late GU toxicity from EBRT was significantly lower than that
from LDR-BT alone (2.38; 95% CI, 1.27-4.44; P = 0.007) (S: Fig. 5b).

3.7. Meta-analysis of GI and GU toxicities between HDR-BT and LDR-BT
3.7.1. Acute GI toxicity and GU toxicity

A meta-analysis of two studies [20,28] revealed no significant difference in the RR of acute GI
toxic complications between HDR-BT and LDR-BT alone (4.14; 95% CI, 0.84-20.40; P = 0.08) (S:
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LDR-BT EBRT Risk Ratio Risk Ratio

Study or Subgroup Events Total Events Total Weight M-H, Random, 95% CI M-H, Random, 95% CI
a acute Gl toxicity

Eade, 2008 et al. (30) 3 158 5 216 83.5% 0.82[0.20, 3.38]

Morimoto, 2014 et al. (28) 0 64 1 92 16.5% 0.48 [0.02, 11.52] -

Subtotal (95% CI) 222 308 100.0% 0.75[0.21, 2.74]

Total events 3 6

Heterogeneity: Tau? = 0.00; Chi*= 0.09,df =1 (P = 0.76); I’ = 0%

Test for overall effect: Z = 0.44 (P = 0.66)
b Iate Gl toxicity

Eade, 2008 et al. (30) 12 158 5 216 31.8% 3.28[1.18,9.13] = m—

Moll, 2020 et al. (17) 29 263 55 212 356% 0.43[0.28, 0.64] =

Sutani 2015 et al. (25) 5 379 58 410 32.7% 0.09 [0.04, 0.23] — &

Subtotal (95% CI) 800 838 100.0% 0.50 [0.10, 2.48] e —

Total events 46 118

Heterogeneity: Tau? = 1.86; Chiz = 26.83, df = 2 (P < 0.00001); I = 93%

Test for overall effect: Z = 0.85 (P = 0.39)

0.01 0.1 1 10 100

Favours [experimental] Favours [control]

Fig. 4. (a) Forest plot of RR for acute GI toxicity following LDR-BT and EBRT. (b) Forest plot of RR for late GI toxicity
following LDR-BT and EBRT.

LDR-BT EBRT Risk Ratio Risk Ratio
Study or Subgroup Events Total Events Total Weight M-H, Random, 95% CI M-H, Random, 95% CI
a acute GU toxicity
Eade, 2008 et al. (30) 12 158 5 216 32.5% 3.28[1.18, 8.13] S E—
Marimoto, 2014 et al. (28 15 64 11 92 67.5% 1.96 [0.96, 3.99 —
Subtotal (95% CI) . 222 308 100.0% 2.32 [[1.29, 4.15]] iR
Total events 27 16

Heterogeneity: Tau? = 0.00; Chi? = 0.67, df = 1 (P = 0.41); > = 0%
Test for overall effect: Z = 2.83 (P = 0.005)

b I1ate GU toxicity

Eade, 2008 et al. (30) 30 158 8 216 256% 5.13[2.42, 10.88] -
Moll, 2020 et al. (17) 192 263 61 212 38.8% 2.54[2.03, 3.17] H
Sutani 2015 et al. (25) 53 379 45 410 35.6% 1.27 [0.88, 1.85] =
Subtotal (95% Cl) 800 838 100.0% 2.38[1.27, 4.44)] —~eli—
Total events 275 114
Heterogeneity: Tau? = 0.25; Chi? = 14.68, df = 2 (P = 0.0007); I* = 86%
Test for overall effect: Z=2.72 (P = 0.007)
01 02 05 1 2 5 10

Favours [experimental] Favours [control]

Fig. 5. (a) Forest plot of RR for acute GU toxicity following LDR-BT and EBRT. (b) Forest plot of RR for late GU toxicity
following LDR-BT and EBRT.

Fig. 6a). The number of studies for this analysis was insufficient for an SA. And a meta-analysis of two
studies [20,28] revealed that the RR of acute GU toxicity from HDR-BT was significantly lower than
that from LDR-BT (0.30; 95% CI, 0.23-0.40; P < 0.001) (S: Fig. 6b). The number of studies for this
analysis was insufficient for an SA.

4. Discussion

With the results of this meta-analysis, we evaluated the significance of RRs of GI toxicities and GU
toxicities in studies by comparing the following therapies: (A) LDR-BT and LDR-BT + EBRT, (B)
LDR-BT and EBRT alone, (C) EBRT and LDR-BT + EBRT, and (D) HDR-BT and LDR-BT alone. The
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HDR-BT LDR-BT Risk Ratio Risk Ratio
Study or Subgroup Events Total Events Total Weight M-H, Random, 95% CI M-H, Random, 95% CI
a acute Gl toxicity
Morimoto, 2014 et al. (28) 0 27 0 37 Not estimable
Yamazaki, 2018 et al. (20) 6 352 2 486 100.0% 4.14 [0.84, 20.40] *t
Subtotal (95% Cl) 379 523 100.0% 4.14 [0.84, 20.40] B
Total events 6 2

Heterogeneity: Not applicable
Test for overall effect: Z = 1.75 (P = 0.08)

b acute GU toxicity

Morimoto, 2014 et al. (28) 4 27 11 37 75% 0.50 [0.18, 1.40] E———
Yamazaki, 2018 et al. (20) 44 352 210 486 92.5% 0.29 [0.22, 0.39] !
Subtotal (95% Cl) 379 523 100.0% 0.30 [0.23, 0.40]

Total events 48 221

Heterogeneity: Tau? = 0.00; Chi? = 0.99, df = 1 (P = 0.32); I?= 0%
Test for overall effect: Z = 8.30 (P < 0.00001)

0.01 0.1 1 10 100
Favours [experimental] Favours [control]

Fig. 6. (a) Forest plot of RR for acute GI toxicity following HDR-BT and LDR-BT. (b) Forest plot of RR for acute GU toxicity
following HDR-BT and LDR-B.

RRs for acute and late GI from LDR-BT were significantly lower than those from LDR-BT + EBRT.
However, the RRs for acute toxicities and late GU toxicities were not significantly different between
LDR-BT and LDR-BT + EBRT. The RRs for acute toxicities and late GU toxicities for EBRT were
significantly better than those for LDR-BT. However, the RRs for acute toxicities and late GI toxicities
were not significantly different between LDR-BT and EBRT. We also found that HDR-BT was related to
a lower incidence of GU toxicities than LDR-BT. These results demonstrate that BT with and without
EBRT can result in both acute and late GI toxicities and GU toxicities with localized prostate cancer.
Moreover, the RRs of acute and late GI toxicities of BT + EBRT were significantly higher than those for
BT.

The varied RT doses in studies must be considered when comparing the RRs of GI and GU toxicities
between different therapies [31]. BT + EBRT may increase the RRs of GI and GU toxicities because
of the combined higher RT dose [32-34]. Increased urinary complications result from a high dose from
EBRT during BT. Many doctors may administer a high BT dose to compensate for soft tissue edema
or seed placement [35,36]. Uncertainty factors of needle and seed placement and the resulting induced
trauma can lead to GU toxicity [37—40]. Substantially lower occurrences of acute urinary toxicities have
been achieved using a combined BT + EBRT regimen [41], which may be related to different implant
prescription doses and/or a different application of EBRT. Based on our analysis, the implant prescription
dose and application of supplemental EBRT had no significant effect on GU toxicity incidence (Fig. 3).
These results indicate that additional clinical studies are needed to further investigate the effect of various
BT treatments on GU toxicity.

Testosterone levels may decline as a result of hormone therapy (HT) on urinary toxicity [42,43]. HT
itself may affect urinary symptoms: this must be considered when comparing both the tumor outcome
and toxicity of BT and BT + EBRT [44-46]. In a previous study, BT with hormonotherapy increases the
progression-free survival rates for men with localized prostate cancer [47]; however, the study did not
evaluate GU toxicity. In one study evaluating EBRT for men with localized prostate cancer, HT increased
the risk of grade 2 acute GU toxicities significantly [48,49]. A meta-analysis reported that HT combined
with RT could decrease micro-metastases and delay biochemical relapse; however, both RT and HT
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have a greater toxicity than RP [50]. HT was a probable confounding factor in our study because of the
differences in its application and duration between the 15 cohort studies.

Large, population-based cancer patient cohort studies show that BT + EBRT is associated with a
significantly higher prostate cancer-specific survival and similar overall survival (OS) than surgery or
EBRT [51]. BT 4+ EBRT can delay disease progression and result in a similar OS and higher cancer-
specific survival with acceptable toxicity than RP [52]. Furthermore, BT + EBRT may lead to increased
GI toxicity while decreasing the RR of GU toxicity. Kishan et al. [53]. reported a better prognosis
associated with EBRT + BT than RP or EBRT alone. BT + EBRT might be a reasonable treatment for
men with high T stages or high Gleason scores. Some studies have shown a relatively high incidence of
GI toxicity with BT 4+ EBRT [54]. Although the incidence of high-grade GI toxicities was low, all people
were treated with supplemental EBRT [55,56]. Our pooled results showed that localized prostate cancer
treated with BT had significantly lower RRs for acute and late GI toxicities than those treated with BT +
EBRT. Our BT-related GI toxicity results are similar to those of Wang et al. [S0] who reported that BT +
EBRT leads to a high incidence of post-radiotherapy GI toxicity. The greater RR of GI toxicity for those
patients receiving EBRT compared to BT + EBRT may be attributed to an increase in the exposure of the
rectum and surrounding tissue to radiation.

Previous studies reported a 15 years disease-free survival rate of 80.4% after treatment of men with
localized prostate cancer with BT [57,58]. Another studies reported a 5 years and 10 years OS rate of 94%
and 84 %, respectively, among similar patients [59]. These findings confirm the long-term efficacy of BT
treatment for localized prostate cancer. Kee et al. [60]. Published a meta-analysis of clinical randomized
control trials, which revealed a significantly higher 5 years biochemical progression-free survival with
1251_BT than with EBRT supplement. However, there was no significant increase in the 5 years survival
or OS for men with grade 3 late GI and GU toxicities. We included recent data in our meta-analysis
and found significantly lower RRs of GU toxic complications for men treated with EBRT than with BT,
although the incidence of GI toxic complications were similar between two therapies. Our observation
that BT can increase late GU toxicity is consistent with that of Rodda et al. [54]. In the comparison
of toxicity between HDR-BT and LDR-BT, HDR-BT significantly reduced the incidence of acute GU
toxic complications. The radiotherapy dose of an LDR-BT implant seeds is delivered over a 6-month
period compared to a 10-15 minute exposure for HDR-BT. As a result, LDR-BT treatment may increase
the incidence of acute GU toxic complications than HDR-BT [61,62]. These observations indicate that
improving BT radiotherapy regimens, including HDR-BT [63,64], can decrease toxicity and improve the
quality of life.

The literature search and screen of this meta-analysis were strict, the included studies were compre-
hensive, and outcomes were highly credible. However, our analysis has several limitations: (A) the total
number of included studies was small (< 10), which precluded an assessment of publication bias; (B)
the studies had different populations in terms of T stage, Gleason score, and initial risk stratification-
nevertheless, this might be relevant to effective tumor control and patients survival outcomes; (C) the
included studies contained insufficient data on HT-related toxicity, radiotherapy volumes and doses, and
prostate risk groups; (D) comprehensive subgroup analyses could not be performed; (E) two toxicity
scales were used (CTCAE and RTOG), which may have confused the interpretation of our results; (F)
there was no uniform definition of time points for acute and late toxicities among the studies; (G) Toxicity
data for individual therapies were not available in the combination treatment group, so the toxicity of
individual therapies could not be determined, and overlapping effect may not be resolved; (H) There was
some heterogeneity with outcomes, but it was accounted for using sensitivity analyses for our study.
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5. Conclusions

Our findings implied that BT with and without EBRT can result in both acute and late GI toxic and
GU toxic complications in men with localized prostate cancer, with LDR-BT leading to a poorer urinary
function than EBRT. The results of this study reveal the need to prevent GI and GU toxic complications
after multiple forms of radiotherapy in the future. Prospective clinical studies are needed to verify and
expand on our results. When making decisions for treating local prostate cancer, clinicians should balance
the effectiveness of different radiotherapies with their safety depends on the actual clinical characteristics.
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