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Abstract.
BACKGROUND: Coronary artery disease (CAD) manifests with a blockage the coronary arteries, usually due to plaque
buildup, and has a serious impact on the human life. Atherosclerotic plaques, including fibrous plaques, lipid plaques, and
calcified plaques can lead to occurrence of CAD. Optical coherence tomography (OCT) is employed in the clinical practice as it
clearly provides a detailed display of the lesion plaques, thereby assessing the patient’s condition. Analyzing the OCT images
manually is a very tedious and time-consuming task for the clinicians. Therefore, automatic segmentation of the coronary OCT
images is necessary.
OBJECTIVE: In view of the good utility of Unet network in the segmentation of medical images, the present study proposed
the development of a Unet network based on Sk-Conv and spatial pyramid pooling modules to segment the coronary OCT
images.
METHODS: In order to extract multi-scale features, these two modules were added at the bottom of UNet. Meanwhile, ablation
experiments are designed to verify each module is effective.
RESULTS: After testing, our model achieves 0.8935 on f1 score and 0.7497 on mIOU. Compared to the current advanced
models, our model performs better.
CONCLUSION: Our model achieves good results on OCT sequences.
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1. Introduction

The use of optical coherence tomography (OCT) in coronary atherosclerosis can clearly show the site
and level of the lesion to the clinicians. It takes a long time for professional doctors to analyze OCT
images manually. Therefore, the automatic segmentation of coronary OCT images is necessary.

In fact, many patch segmentation methods have been proposed. Based on the Haralick texture signature
and K-means clustering, Prakash [1] introduced a new patch segmentation method. In the study by
Celi et al. [2], a novel method was employed that introduced the best global threshold of OSTU and
morphological processing. Xu [3] proposed an OCT image system that adopted the support vector machine
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(SVM) for automatic detection of atherosclerotic diseases. For achieving semi-automatic segmentation on
OCT images, Huang et al. [4] adopted a method on the basis of image feature extraction and SVM. This
method achieved a precision of 89% in the detection of fibrous plaques, 79.3% for calcified plaques, and
86.5% for lipid plaques. Ughi [5] and Athanasiou applied the machine learning in the form of random
forest and K-means clustering model to detect the calcified plaques on coronary OCT. In an approach
employing deep learning, Gessert [7] developed a method with deep learning models to discover and
classify the calcifications and plaques between fibers/lipids. Li employed a fully automatic method on
the basis of convolutional neural network for segmentation of calcified plaques [8], and the F1 score for
pixel-level calcification classification reached 0.883 ± 0.008.

Due to the good segmentation performance of UNet [9] on medical images, many related models have
been proposed. The Att-UNet model [10] proposed a medical attention gate model that paid attention to
the important local features from encoders. UNet++ [11] decreased the semantic gap between the shallow
and deep feature maps by redesigning skip connection to fill up the hollow structure of UNet. With the
dense atrous convolution module (DAC) and the residual multi-kernel pooling module (RMP), the CE-Net
model proposed a context extractor to obtain deeper semantic feature maps. The DU-Net model [13]
extends UNet and two other types of connections with dense blocks to obtain more information of the
feature map. Cao [14] introduced the dilated convolution of 4 parallel branches before concatenating at
UNet’s each layer to decrease the semantic gap of features between the encoder and its corresponding
decoder.

Inspired by the attention mechanism and the work of Cao at al., our study proposed two improved
methods based on UNet. First, a four-branch Sk-Conv module [15] was added to the last layer of the
encoder to synthesize messages from multiple convolution kernels. In addition, we introduced a spatial
pyramid pooling (spp) module [16] to the original UNet network to get multi-scale features.

2. Dataset and methodology

2.1. Dataset and preprocessing

In the present study, raw OCT images of the culprit vessels of each patient were acquired through the
ILUMIEN OPTIS system built into the OCT Mobile Dragonfly. A total of 5624 frames of OCT original
images of the culprit blood vessels of 15 patients were simultaneously annotated by 2 observers through
ITK-Snap software, and the normal tissues and fibers in each frame of OCT original images of the culprit
vessels of the patients were marked with four different colors. Plaques, lipid plaques, and calcified plaques
(Fig. 1), and were reviewed by a clinical expert for training and testing of deep learning models.

Since the original image or label with the size of 736 * 736 was too large and consisted too much
information, which was unnecessary for segmentation, the adjustment of the image size was necessary.
After many prior experiments, the original image was resized to 370 * 370 size for more accurate
prediction. Among the 5624 images provided, we selected 1500 images to test and the others were
augmented to train 49488 images. Enhancements include 90◦, 180◦ and 270◦ rotations along with the
horizontal and vertical flips.

2.2. Architecture

We employed the Sk-Conv module to obtain more information of the different receptive fields on the
basis of UNet by dynamically selecting the size of convolution kernels. Meanwhile, we introduced the
SPP module to obtain multi-scale feature information of the images. The architecture of the method
adopted in the study is shown in Fig. 2.
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Fig. 1. a) Four cropped OCT images with the size of 370 * 370; b) Corresponding ground truth labels: red – normal, green –
fibrosis, blue – lipid, yellow – calcification and black – background (bg).

Fig. 2. Network architecture of the present study; green arrow indicates the spp module and purple arrow shows the Sk-Conv
module.
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Fig. 3. Proposed SPP model: The max-pooling of three scales, convolution with the size of 3 × 3 and up-sampling were applied
in turn to extract multi-scale features. Output was finally concatenated the with the input.

2.3. Spatial pyramid pooling

For achieving the multi-scale extraction of advanced features of the encoder, the module called SPP
(Fig. 3) was applied at the last layer of UNet to perform pooling of three scales on the input feature map.
Subsequently, we performed convolution to extract the features with different scales, upsample to the size
of the input and concatenated with the original feature map. This module enhanced the robustness of this
network to differentiate the spatial layout and resolution.

2.4. Sk-Conv

Since the receptive field of a fixed-size convolution kernel is fixed, we introduced the Sk-Conv (Fig. 4)
to generate the information of convolution kernels with different sizes. As a result, the method could
resize the receptive field adaptively, presented the importance of different convolution kernels, and raised
the generalization ability of the net.
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Fig. 4. SK-Conv module employed in our model.

In Fig. 4, SK-Net introduced a branch attention mechanism while paying attention to the channel
attention, which could resize the receptive field adaptively and exhibited a better performance. The core
in Sk-Net is the SK-Conv module, which contained three parts. In the first stage of the SK-Conv module
which was called split in our network, convolution kernels with sizes of 1, 3, 5, and 7 were set up to
perform convolution on the feature map X to obtain U1, U2, U3, and U4. In the second stage named
fuse, the four outputs were added element-wise to generate U; subsequently the global information S was
obtained through global average pooling (GAP), and then the full connect layer (FC) was performed on
S to find each channel. Then Z was restored to the size of S through a full connect layer again. In the
last stage called select, softmax was used to obtain the weight matrices of kernels of different sizes and
weighted operations with U1, U2, U3, and U4 respectively, and finally the feature map V containing the
attention of 4 branches was obtained.

2.5. Training

We used the stochastic gradient descend with a momentum of 0.9 during the model training. In the
Sk-Conv module, there are three important hyper-parameters: M determines the number of kernels to
be chosen, the group number G that shows the cardinality of each branch, and r indicates the number of
output channels of the first fully connected layer in the fuse stage. We set G = 1, M = 4 and r = 16.

Inspired by Cao’s study [14], category imbalance is very common for medical image segmentation,
so we needed to specifically calculate the number of pixels of each target. Based on our statistics, the
number of pixels of these five types of targets was 6244003560 (background), 36524472 (normal tissue),
222035352 (fibrous plaque), 158842704 (lipid plaque) and 113501112 (calcified plaque). Obviously,
there was a big difference in the number of background pixels and other pixels. Therefore, we chose the
Focal Loss as the focal loss and set α = 0.5, γ = 2.

In addition, all the programs were implemented by Pytorch 1.10.1 toolkit and run on Red Hat 4.8.5
system with three NVIDIA Tesla P100 GPUs and an Inter(R) Xeon(R) Gold 5118 CPU @ 2.30GHz.

3. Results

3.1. Ablation studies

The ablation experiments (Table 1) were necessary in our research. According to our experiment, the
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Table 1
Ablation study

Model F1 score mIOU
U-Net 0.8761 0.7082
U-Net + SPP 0.8914 0.7422
U-Net + SK-Conv 0.8833 0.7311
U-Net + SPP + SK-Conv 0.8935 0.7497

Table 2
Comparison among different models on four cases

Original image

Label

UNet

AttUNet

CE-Net

ECA-UNet

Cao et al.

Ours
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Table 3
Comparison of different methods indexes

Model and classes Precision Recall F1 score mIOU
UNet Background 0.99 0.99 0.99 0.7082

Normal tissue 0.76 0.74 0.75
Fibrous plaque 0.82 0.80 0.81
Lipid plaque 0.79 0.74 0.76
Calcified plaque 0.79 0.81 0.80

Att-UNet Background 0.99 0.99 0.99 0.6689
Normal tissue 0.76 0.68 0.72
Fibrous plaque 0.80 0.79 0.80
Lipid plaque 0.74 0.68 0.71
Calcified plaque 0.77 0.72 0.74

CE-Net Background 0.99 0.99 0.99 0.7405
Normal tissue 0.81 0.76 0.79
Fibrous plaque 0.83 0.83 0.83
Lipid plaque 0.83 0.78 0.80
Calcified plaque 0.86 0.79 0.82

ECAUNet Background 0.99 0.99 0.99 0.7165
Normal tissue 0.77 0.77 0.77
Fibrous plaque 0.82 0.81 0.81
Lipid plaque 0.79 0.74 0.77
Calcified plaque 0.80 0.80 0.80

Cao et al. Background 0.99 0.99 0.99 0.7453
Normal tissue 0.82 0.76 0.79
Fibrous plaque 0.82 0.84 0.83
Lipid plaque 0.82 0.80 0.81
Calcified plaque 0.83 0.83 0.83

Ours Background 0.99 0.99 0.99 0.7497
Normal tissue 0.78 0.81 0.80
Fibrous plaque 0.84 0.82 0.83
Lipid plaque 0.82 0.80 0.81
Calcified plaque 0.83 0.83 0.83

U-Net integrating the spp module or the Sk-Conv module performed better in terms of both the F1 score
and mIOU. Finally, our model with both SPP module and Sk-Conv improved the Fl score by 1% and
mIOU by 4%.

3.2. Experimental results

Our study systematically compared the differences between the UNet, Attention-UNet (Att-UNet),
CE-Net, UNet with ECA-Module (ECA-U-Net) [18] and Cao’s method in plaque segmentation, and
presented the comparison of sensitivity, precision, F1 score and mIOU in the test set.

Table 2 shows some cases of the labels and segmentation results of different models. Our study
offered more accurate segmentation than others. Furthermore, only few missed and wrong prediction
on segmentation of normal tissues, fibrous plaque, lipid plaque and calcified plaque were noted when
compared to the other methods.

Table 3 indicates the specific metrics of different methods on test images. The F1 scores and the mIOU
of other models were no better than that of our method.

4. Conclusion

In the present study, we designed an improved UNet by adding a spatial pyramid pooling and Sk-Conv
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to achieve better multi-scale feature extraction for accurately detecting and quantitatively calculating
the degree of coronary atherosclerosis tissue through original OCT images. The results indicated that
with the improvements of spp and Sk-Conv, our model achieved good results on the OCT sequences and
performed better than the current advanced models.

The clinical significance of our results is that it did not only ensure accuracy, but also improved the
efficiency of the interpretation and analysis of coronary and OCT images. In addition, our model could
accurately segment the normal tissues and diseased plaques at the same time, which can assist the doctors
to understand the degree of lesion of the OCT sequence, thereby deciding the course of treatment for the
patients. However, in the present study, the pixels representing the normal tissue accounted for the least
proportion of the training samples, and exhibited a poor metric. In this regard, the improvement in the
loss function or adding weights to focal loss can be considered in future studies.
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