
Technology and Health Care 31 (2023) S111–S121 S111
DOI 10.3233/THC-236011
IOS Press

Biomedical named entity recognition based
on fusion multi-features embedding

Meijing Li, Hao Yang and Yuxin Liu∗
College of Information Engineering, Shanghai Maritime University, Shanghai, China

Abstract.
BACKGROUND: With the exponential increase in the volume of biomedical literature, text mining tasks are becoming increas-
ingly important in the medical domain. Named entities are the primary identification tasks in text mining, prerequisites and
critical parts for building medical domain knowledge graphs, medical question and answer systems, medical text classification.
OBJECTIVE: The study goal is to recognize biomedical entities effectively by fusing multi-feature embedding. Multiple
features provide more comprehensive information so that better predictions can be obtained.
METHODS: Firstly, three different kinds of features are generated, including deep contextual word-level features, local char-
level features, and part-of-speech features at the word representation layer. The word representation vectors are inputs into
BiLSTM as features to obtain the dependency information. Finally, the CRF algorithm is used to learn the features of the state
sequences to obtain the global optimal tagging sequences.
RESULTS: The experimental results showed that the model outperformed other state-of-the-art methods for all-around perfor-
mance in six datasets among eight of four biomedical entity types.
CONCLUSION: The proposed method has a positive effect on the prediction results. It comprehensively considers the relevant
factors of named entity recognition because the semantic information is enhanced by fusing multi-features embedding.
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1. Introduction

With the rapid development of biomedical technology, biomedical literature is also growing at an
exponential rate. For example, since the global COVID-19 outbreak in March 2020, PMC has published
more than 280,000 papers related to COVID-19. So, it is very important to quickly and efficiently extract
disease-related information. The Biomedical Named Entity Recognition (BNER) is the first step and the
most important step in biomedical semantic information extraction [1–3]. BNER is a prerequisite and
critical part of building medical knowledge graphs, medical question and answer systems, medical text
classification in biomedical field [4,5]. In addition, highly accurate entity extraction largely guarantees the
high reliability and applicability of the constructed knowledge graphs and medical Q&A systems [6–8].
It is the basic step of many downstream text mining applications and lays a foundation for further mining
the rich information in the biomedical literature.

BNER has received attention from researchers and it is a interesting research topic in Natural Lan-
guage Processing (NLP). BNE mainly includes gene, protein, DNA, RNA, disease, drug, and chemical

∗Corresponding author: Yuxin Liu, College of Information Engineering, Shanghai Maritime University, Shanghai, China.
E-mail: liuyx@shmtu.edu.cn.

0928-7329 c© 2023 – The authors. Published by IOS Press. This is an Open Access article distributed under the terms of the
Creative Commons Attribution-NonCommercial License (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/


S112 M. Li et al. / Biomedical named entity recognition based on fusion multi-features embedding

substance [9]. Until now, various text mining methods are applied to identify BNEs, such as lexicon
and rule-based methods [10–12], statistical machine learning methods [13–19], deep learning meth-
ods [20–31].

The deep learning approach uses end-to-end model training and automatic feature extraction to
avoid tedious manual extraction by acquiring features and distributed data representations with good
generalization capabilities. Compared to the lexicon and rule-based methods or statistical machine
learning methods, deep learning neural network-based methods have the advantage of no longer relying
on manual features and domain knowledge, reducing the cost of manual feature extraction, having more
robust generalization, and effectively improving system efficiency [2–4].

In the last few years, the performance of Long Short-Term Memory Networks [18] (LSTM) and
Conditional Random Fields [19] (CRF) for NER has improved considerably. Yao et al. [20] first built
a multi-layer neural network on unlabeled biomedical texts to implement word embedding vectors
for biomedical words on a large-scale corpus. Huang et al. [21] proposed a BiLSTM-CRF model for
predicting sequence labels. Lyu et al. [22] used the BiLSTM-RNN model to combine biomedical word
embedding and character embedding for entity recognition. Although their work has achieved some
success, the word vector methods used are too simple to study the deep meaning of biomedical texts.

Gridach et al. [26] first used character-level embedding to represent features in the biomedical domain
and constructed the hybrid model BiLSTM-CRF for named entity recognition. Liu et al. [27] extracted
lexical and morphological features of words, and a multi-channel convolutional neural network was
post-connected to the BiLSTM-CRF model for entity extraction. Patel et al. [28] adopted a method
based on Flair and GloVe embeddings and a bidirectional LSTM-CRF-based sequence tagger to train a
BNER model. Yoon et al. [29] build a model using multiple BiLSTM-CRFs that are constructed on top of
multiple individual task NER models (STMs). They can exchange information to each other for better
prediction result. Wang et al. [30] constructed a multi-task learning framework that shares character-level
information and word-level information of related BNEs to achieve significant performance gains. Sachan
et al. [31] proposed BiLM-NER model, a bi-directional language model (BiLM) which is trained on
unlabeled data, a better method is adopted to initialize the parameters of NER model. In addition, recent
work on building tools in the biomedical field, such as HunFlair [32] and BERN [33], has achieved good
results.

However, direct biomedical application methods has the following limitations: (i) Word representation
models like Word2Vec [34], ELMo [35], BERT [36], and ALBERT [37] are mainly trained on datasets
with general non-domain specific texts (e.g., Wikipedia). The general word and sentence patterns are
different from the biomedical text patterns. It is difficult to catch the biomedical semantic information
from the text. (ii) The representation layer in previous work [26–31] is simple and does not effectively
capture local and global information of words. A single word vector representation inevitably avoids the
problem of multiple word meanings.

To solve these problems, we propose an end-to-end approach based on biomedical fuse multi-feature
embedding to handle the shortcomings mentioned above for BNER. Our goal is to extract a variety of
features representing biomedical named entities from different dimensions, so as to improve the effect of
entity recognition. Our contributions are as follows:

A multi-feature embedding based BNER method to capture features from biomedical texts is proposed.
Combining deep contextual word-lever features, local char-level features, and part-of-speech features of
biomedical texts enhances the semantic information representation of words to identify entities effectively.

We have validated the effectiveness of our method on eight datasets of four entity types in the biomedical
field: disease, drug/chemical, gene/protein, and species, and all results show that our model is better than
other published methods.
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Fig. 1. Multi-Feature Embedding BiLSTM-CRF architecture.

2. Method

Our proposed model consists of two main components: (i) Multi-Feature Representation layer for
enhancing the semantic information, (ii) Downstream named entity recognition task layer for capturing
long dependent information, and getting globally optimal tagging sequence. The whole workflow is
shown in Fig. 1.

2.1. Multi-feature representation layer

The NER task is to label the entities in a given sentence. More formally, given the input sentence
S = (x1, x2, . . . , xn), we predict the corresponding label Y = (y1, y2, . . . , yn).

To extract the coverage information of the input sentence as much as possible, we apply the following
three feature extraction methods from different perspectives to represent the input sequence: deep context
word-level features, local char-level features, and part-of-speech features.

2.1.1. Deep context word-level features
At the text representation layer, we adopt the BERT architecture [36] as our model to obtain deep

contextual word-level features of biomedical texts. Since what needs to be identified in this study are
entities in the biomedical domain, we employ BioBERT [38], which is a model pre-trained on a large-
scale biomedical corpus based on the BERT architecture. A language model trained with masks using
bidirectional transformers does a good job of contextualizing words. Below we will briefly introduce the
core architecture in the BERT model: the Transformer Encoder.
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Table 1
The alphabet used in all of our CharCNN models

Character type Chararcters
English letters abcdefghijklmnopqrstuvwxyz
Digits 0123456789
Others -,;.!?:”’/\|_@#$% &*˜‘+-=<>()[]{}

In order to better represent biomedical text, twelve Transformer Encoders are used in the pre-trained
language model BioBERT. In the Encode layer, use a multi-headed self-attention mechanism instead of
the traditional LSTM model. The formula for the self-attention mechanism is shown in Eq. (1):

Attention (Q,K, V ) = Softmax
(

QKT

√
dk

)
V (1)

where, Q, K, and V are word vector matrices and dk is the size of the input dimension. Softmax is the
activation function.

The multi-headed self-attention mechanism learns multiple Q, K, and V by several different linear
transformations, projects them, and finally stitches the results together. The formula is shown in Eqs (2)
and (3):

MultiHead (Q,K, V ) = Concat (head1, . . . , headn)WO (2)

headi = Attention
(

QWQ
i ,KWK

i ,VWV
i

)
(3)

2.1.2. Local char-level features
To fully consider the internal information of biomedical texts, Character-level Convolutional Neural

Network [40] (CharCNN) is used to extract the local char-level features of each word in the biomedical
text. In this paper, the character-level convolutional neural network contains three components: a character
vector layer, a one-dimensional convolutional layer, and a maximum pooling layer.

The character vector layer transforms the characters in each word of the input sequence into its
corresponding character vector, which constitutes the character vector matrix of the word that will be
continuously updated and learned during the model training. The alphabet used in our models consists of
70 characters [30] as shown in Table 1.

In the convolution layer, multiple layers of convolution kernels are used on the character vector matrix
to extract the local features of the words. Finally, the local char-level feature vectors of biomedical text
words are obtained by using maximum pooling.

2.1.3. Part-of-speech features
To represent the syntactic pattern characteristics of the words in the input sentence, such as the

dependencies between the suffixes and the output labels, we use the NLTK to get the part-of-speech tag
sequence of the text sentence.

Lexicality, as the fundamental grammatical property of words, is a crucial feature of words and
utterances. The part-of-speech tag sequence contains the syntactic information of the words in the
sentence.

2.2. Design downstream named entity recognition task layer

2.2.1. BiLSTM for long dependency information
To process the long dependency and contextual information in the input text sequence, we apply

Bidirectional Long Short-Term Memory Networks (BiLSTM) to access more semantic dependencies.
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LSTM introduces a gating mechanism in the RNN structure to selectively change what needs to be
retained and capture long-range associative information, which effectively overcomes the problems of
traditional RNN models. The specific calculation process of LSTM is given in Eq. (4):

it = σ (Wi ∗ [ht−1, xt] + bi)

ft = σ (Wf ∗ [ht−1, xt] + bf )

ot = σ (Wo ∗ [ht−1, xt] + bo) (4)

gt = tanh (Wg ∗ [ht−1, xt] + bg)

ct = ft � ct−1 + it � gt
ht = ot � tanh (ct)

where, it, ft, ot, and ct are the input gate, forget gate, output gate, and cell vectors at the moment t. xt
is the current input information, ht−1 is the state of the hidden layer at the previous moment, σ is the
activation function, W is the weight matrix, b is the offset vector.

The BiLSTM model which uses a forward and backward LSTM module can consider the contextual
information to extract bi-directional sentence features to obtain better results, which is more suitable for
the characteristics of BNER.

2.2.2. CRF for globally optimal tagging sequence
To solve the problem of possible inter-dependencies and mutual constraints in the tag sequences, such

as B-gene tags should not be followed by I-chem tags, we adopt the Conditional Random Field (CRF) in
this research.

Although the BiLSTM model can recognize entity boundaries, it does not fully learn the label de-
pendencies between entity sequences. CRF is a probabilistic graphical model proposed based on the
EM [41] model and the HMM [42] model commonly used for tagging sequences such as named entity
recognition, target recognition, and linguistic annotation. It can get a globally optimal tagging sequence
by considering the relationship of adjacent tags and using a state transfer matrix to decode jointly.

Assume that the output sequence of the BiLSTM model is X and one of the predicted sequences is Y.
then the evaluation score P (X, Y) can be obtained by Eq. (5).

p (X, y) =

n∑
i=1

M ′yi,yi+1
+

n∑
i=1

Ni,yi
(5)

where, M is the transfer matrix, M ′yi,yi+1
denotes the probability of transferring from yi tag to yi+1, and

Ni,yi denotes the probability that the ith word is tagged with tag yi.

3. Experiment

3.1. Experiment datasets

To verify the universality and effectiveness of the proposed model, our method is evaluated in eight
datasets containing four entity types: gene/protein, drug/chemical, disease and species. Datasets including
gene and protein include BC2GM and JNLPBA corpus. Datasets including drug and chemical include
BC4CHEMD and BC5CDR-chem corpus. Datasets including disease include NCBI and BC5CDR-disease
corpus. Datasets including species include LINNAEUS and Species-800 corpus. A brief explanation of
the dataset used in this paper is as follows:
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Table 2
Statistics of datasets

Entity type Dataset The number of annotations
Disease NCBI-Disease 6,881

BC5CDR-Disease 12,694
Chemical/Drug BC4CHEMD 79,842

BC5CDR-Chem 15,411
Gene/Peotein BC2GM 20,703

JNLPBA 35,460
Species LINNAEUS 4,077

Species-800 3,708

– BC5CDR: This dataset is provided by BioCreative V Chemical Disease Relation Extraction
(BC5CDR) Task [43]. The dataset has two subtasks, the first is to identify chemical entities, and the
second is to identify disease entities.

– BC4CHEMD: This dataset is provided by BioCreative Community Challenge IV Task [44]. It is
a data manually marked by expert chemistry from 10,000 PubMed abstracted references for the
development and evaluation of chemical NER tools, and eventually contains about 80,000 chemical
entities.

– NCBI Disease: This dataset is provided by Doğan et al. [45], which includes 6892 disease mentions
from 793 abstracts. It is worth mentioning that the dataset is labeled at the Mention and conceptual
levels, with the characteristics of large scale and high quality, and it aligns the disease name with the
corresponding disease concept ID.

– JNLPBA: This dataset was provided by Kim et al. [46] and annotated on 2400 abstracts in MEDLINE
database, resulting in a total of 22,402 sentences containing five entity types: DNA, RNA,cell-type,
cell-line and protein.

– BC2GM: This dataset is provided by Smith et al. [47] at 2008 the BioCreative II Gene Mention
Task. The entire dataset contains 20,000 sentences, and participants were asked to identify the genes
mentioned in the sentences by giving the beginning and end characters of the sentences.

– LINNEAUS: This dataset is proposed by Gerner et al. [48], which is an open-source species
name recognition and normalization software system. To verify the system, the authors created a
LINNEAUS dataset of 100 full-text documents randomly selected from the PMC and manually
annotated, resulting in 4259 species references.

– Species-800: This dataset is proposed by Pafilis et al. [49]. and the species entities were annotated
manually on 800 PubMed abstracts.

Biomedical NLP researchers widely use these datasets for testing BNER models. The above
datasets used in our paper are publicly available and can be downloaded from the following
url:https://github.com/cambridgeltl/MTL-Bioinformatics-2016. In order to identify named entities, we
use the IOB marking scheme. The detailed data of all datasets are listed in Table 2.

3.2. Experiment evaluation measure

To evaluate the performance of our method, we adopt three evaluation measures: precision (P):
indicates the proportion of items that should be retrieved among all retrieved items, recall (R): indicates
the proportion of all retrieved items to all items that should be retrieved, F1-score (F1): indicates the
weighted harmonic average of Precision and Recall. In order to more accurately identify entities in
biomedical literature, we believe that the entity predicted by the model is correct only when the entity
type and boundary are completely matched.
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Table 3
Comparison of BNER methods for “Gene/Protein”

Models Datasets
BC2GM JNLPBA

P R F1 P R F1
CollaboNet 0.8049 0.7899 0.7973 0.7443 0.8322 0.7858
MTM 0.8210 0.8370 0.8407 0.7091 0.7634 0.7352
BiLM 0.8181 0.8157 0.8169 0.7139 0.7906 0.7503
MTL-LS – – 0.8294 – – 0.7766
BioBERT 0.8432 0.8512 0.8472 0.7224 0.8356 0.7749
DTranNER 0.8421 0.8484 0.8456 – – –
BioBERT-MRC – – 0.8511 – – 0.7845
Bio-XLNet-CRF – – 0.8252 – – 0.7586
MT-BioNER 0.8442 0.8514 0.8478 – – –
Ours 0.9188 0.9147 0.9167 0.8662 0.9239 0.8930

Fig. 2. Comparison of experimental results of Word2Vec, BioBERT and our method.

3.3. Analysis of experiment result

3.3.1. Comparison with different representation
In order to test the multi-feature embedding representation, our proposed method compare with two

main representation methods, Word2Vec and BioBERT. The benchmark methods of downstream NER
tasks all adopt method BiLSTM-CRF.

As shown in Fig. 2, the performance of the models based on the pre-training BioBERT is better than
Word2Vec. The main reason is the latter uses the word vectors obtained by traditional statics embedding
method and cannot handle the problems of ambiguity and polysemy.

In addition, our model outperforms in terms of F1 values due to the character-level local features and
lexical features incorporated. That is because CharCNN module can extract local character-level features,
which can not only represent morphological information to a certain extent, but also model biological
entities with mixed case, special characters and fuzzy boundaries. The addition of lexical features adds
more linguistic information to the text. Thus, the combined feature embedding method proposed in this
paper improves the accuracy of the model for entities.

3.3.2. Comparison with state-of-the-art studies
To evaluate the performance of the proposed method, we compare with the state-of-the-art methods

including CollaboNet [29], MTM [30], BiLM [31], MTL-LS [52], BioBERT [38], DTranNER [50],
BioBERT-MRC [51], Bio-XLNet-CRF [53], MT-BioNER [54].



S118 M. Li et al. / Biomedical named entity recognition based on fusion multi-features embedding

Table 4
Comparison of BNER methods for “Disease”

Models Datasets
NCBI-Disease BC5CDR-Disease

P R F1 P R F1
CollaboNet 0.8548 0.8727 0.8636 0.8561 0.8261 0.8408
MTM 0.8586 0.8642 0.8614 0.8373 0.8293 0.8333
BiLM 0.8641 0.8831 0.8734 0.8810 0.9049 0.8928
MTL-LS – – 0.8897 – – 0.8734
BioBERT 0.8822 0.9125 0.8971 0.8647 0.8784 0.8715
DTranNER 0.8821 0.8904 0.8862 0.8675 0.8740 0.8722
BioBERT-MRC – – 0.8939 – – 0.8756
Bio-XLNet-CRF – – 0.8861 – – 0.8656
MT-BioNER 0.8890 0.9094 0.8991 – – –
Ours 0.9273 0.9444 0.9357 0.9011 0.8752 0.8878

Table 5
Comparison of BNER methods for “Species”

Models Datasets
LINNAEUS Species-800

P R F1 P R F1
BioBERT 0.9077 08583 0.8824 0.7280 0.7536 0.7406
MTL-LS – – 0.8506 – – –
Bio-XLNet-CRF – – 0.8856 – – –
Ours 0.9489 0.8509 0.8937 0.8549 0.8864 0.8702

Table 6
Comparison of BNER methods for “Chemical/drug”

Models Datasets
BC4CHEMD BC5CDR-chem

P R F1 P R F1
CollaboNet 0.9078 0.8701 0.8885 0.9426 0.9238 0.9331
MTM 0.9130 0.8753 0.8937 0.9309 0.8956 0.9129
BiLM – – – 0.8810 0.9049 0.8928
MTL-LS- – – 0.9247 – – 0.9314
BioBERT 0.9280 0.9192 0.9236 0.9368 0.9326 0.9347
DTranNER 0.9194 0.9204 0.9109 0.9428 0.9404 0.9416
BioBERT-MRC – – 0.9270 – – 0.8939
Bio-XLNet-CRF – – 0.9273 – – 0.9341
MT-BioNER – – 0.8890 0.9094 0.899
Ours 0.9482 0.9512 0.9497 0.9117 0.9347 0.9227

Results are summarized in Tables 3–6. The table reports three indicators on each dataset: precision (P),
recall(R) and F1 score (F1). We use bold to show the best score, and use the underline to show the second
best score. As a result, our proposed method acquire the best performance on six datasets among eight..

The reasons why our model achieves better performance are (i) It enhances the semantic representation
of the entity by fusing features of different perspectives. (ii) We use multiple layers of convolution kernels
in CharCNN, which can catch the non-surface information of the word from multiple angles. In addition,
character level has the advantage that it can be easily generalized to all languages.

As shown in Tables 3–6, it can be seen that the F1 score of our model is the highest in the medical
datasets of (i) Gene/protein-related datasets, our model achieves 91.67% (6.56% improvement) in the
BC2GM and 89.30% (10.72% improvement) in the JNLPBA. (ii) Disease-related datasets achieves
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93.57% (5.66% improvement) in the NCBI. (iii) Chemical/drug-related datasets achieves 94.97% (2.27%
improvement) in the NCBI. (iv) Species-related datasets achieves 89.37% (1.13% improvement) in
the LINNAEUS and 87.02% (12.96% improvement) in the Species-800. Compared with other recent
methods, the results are competitive and definite improvements can be seen on most datasets

On BC5CDR dataset, the result is not the best one because our method differentiates between subsets
in BC5CDR dataset. BC5CDR dataset contains two subsets, BC5CDR-disease and BC5CDR-Chem. In
the experiment, we split it into the recognition tasks of two entity categories, resulting in the loss of the
relationship between the entity types in sentences.

The above excellent results are attributed to the fact that the model proposed in this paper can extract
deep context word-level, local char-level, and part-of-speech features, so that the training of the word
vector can better represent the grammatical and semantic information, thus improving the performance of
entity recognition.

4. Conclusion

In this paper we proposed a method that fuses multi-feature embedding representations to represent
words for named entity recognition in the biomedical domain. Enhanced semantic information represen-
tation of words is achieved by fusing deep contextual features, character-level local features, and lexical
features of biomedical texts. Our presentation layer can help solve some problems in linguistics such
as polysemy, semantics, out of vocabulary, and special entity within biomedical texts. Experiments are
conducted to validate the model’s effectiveness proposed in this paper on eight datasets of four entity
types in the biomedical domain. As a result, our model accomplished good performance on six BNER
datasets.
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