
Technology and Health Care 31 (2023) S81–S95 S81
DOI 10.3233/THC-236009
IOS Press

Improved adaptive tessellation rendering
algorithm

Monan Wanga, Juntong Jingb,∗, Su Gaoc, Puyang Biana, Yuzhen Maa and Naifa Zhoua

aKey Laboratory of Medical Biomechanics and Materials of Heilongjiang Province, Harbin University of
Science and Technology, Harbin, China
bWeill Cornell Medicine, New York, NY, USA
cBeijing Normal University Hospital, Beijing, China

Abstract.
BACKGROUND: The human body model in the virtual surgery system is generally nested by multiple complex models and
each model has quite complex tangent and curvature change. In actual rendering, if all details of the human body model are
rendered with high performance, it may cause the stutter due to insufficient hardware performance. If the human body model is
roughly rendered, the details of the model cannot be well represented.
OBJECTIVE: In order to realize the real-time rendering of complex models in virtual surgical systems, this paper proposes an
improved adaptive tessellation rendering algorithm, which includes offline and online parts.
METHODS: The offline part mainly completes data reading and data structure constructing. The online part performs the
surface subdivision operation in-real time for each frame, which includes the subdivision operation of the control points and
surface evaluation. The offline part simplifies the subdivision step by recording the surface subdivision hierarchy using a quadtree
and using control templates to record control point information.
RESULTS: The online part reduces computation time by using a matrix to record topological relationships between vertices and
vertex weights. The online part can compress the time complexity of traversing the quadtree of different subdivision levels to
O(n logn) by establishing an association with the quadtree of each subdivision level and using the greedy algorithm to complete
the traversal of the quadtree. Finally, the adaptive tessellation rendering algorithm proposed in this paper is compared with other
commonly used tessellation algorithms.
CONCLUSION: The algorithm has advantages in computational efficiency and graphical display.

Keywords: Virtual surgery, real-time rendering, surface subdivision, computational efficiency

1. Introduction

The requirements of the rendering technology in the virtual surgery system include: first, converting the
abstract data into accurate graphic animation and presenting it; second, ensuring the real-time performance
of the rendering process; and third, using efficient algorithms to achieve better visual effects. In 1978, Doo
and Sabin proposed the Doo-Sabin subdivision algorithm [1]. In 1987, Loop proposed a Loop subdivision
algorithm based on triangle mesh on basis of the box spline subdivision algorithm and extended the 3-
direction quartic box spline to the arbitrary triangular mesh [2]. In 2001, Vello proposed a 4–8 subdivision
algorithm that only works for triangular meshes. In 2003, Kobbelt proposed

√
3 subdivision algorithm, the

topology rule of this subdivision algorithm is different from other methods. It is a subdivision algorithm of

∗Corresponding author: Juntong Jing, Weill Cornell Medicine, New York, NY, USA. E-mail: juj4004@med.cornell.edu.

0928-7329 c© 2023 – The authors. Published by IOS Press. This is an Open Access article distributed under the terms of the
Creative Commons Attribution-NonCommercial License (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/

S82 M. Wang et al. / Improved adaptive tessellation rendering algorithm

split mode of 1–3. The limit subdivision surface of the algorithm is curvature continuous, at the singular
point is tangent continuous and this subdivision algorithm is much faster than the Vello algorithm. Nasriet
al. proposed a surface/surface crossover algorithm, which is applicable not only to Bczicr surface and
B-spline surface, but also to other types of surface. This boundary processing method is fully applicable
to the tessellation method proposed by Catmull-Clark [3]. Hoppe et al. proposed a representation method
of piecewise smooth surface of arbitrary topological type, including the representation method of infinite
sharp crease and sharp features [4]. Derose et al. proposed a tessellation algorithm used in clothing
simulation that can be used to render the boundary between materials and the semi-sharp crease [5] of the
garment. Forsey et al. proposed a method of modifying the subdivision details in an area of a surface
without affecting other regions [6].

The tessellation algorithm has always been the preferred method of film production [7]. In 2005,
Pixar Animation Studio attempted to render subdivision surfaces in real-time on graphics hardware for
authoring tools and video games. In recent years, due to the development of programmable technology
of graphics processors, especially the supporting of graphics API such as OpenGL4.x and DirectX11
for programmable pipeline, a greatly development of the rendering technology of tessellation was made.
Schafer et al. gave a comprehensive overview of the rendering techniques of hardware surface subdivision.
The challenge of rendering subdivision surfaces using Hardware Tessellation is to repair the base mesh,
that is, converting the surface of the base mesh into a number of parametric patches [8,9] that can be
directly calculated. Stam proved the possibility of directly calculating the subdivision surface [10].
However, the drawback of the Stam method is that solving the eigenvalues and eigenvectors of the matrix
requires a lot of calculations and the convergence speed is slow. Bolz et al. proposed a direct calculation
scheme, which can calculate the specific topology of each face through the tabular function, but the
method requires a large table which only can be applied to a small-scale topology and needs to use the
global subdivision to separate the temporary vertices [11]. Loop and Schaefer proposed a method for
approximating the Catmull-Clark subdivision surface using the approximate quadrilateral patch of bicubic
Bezier patch [12]. For the quadrilateral face of the mesh, a patch that approximates the shape and contour
of the Catmull-Clark surface is constructed. All surfaces except the patch edge of the singular vertex are
smooth, and the constructed patch is close to the tangent field of the Catmull Clark surface. This operation
defines a precise approximation method for the Catmull-Clark surface that can be quickly evaluated in
the GPU architecture of the programmable surface subdivision unit. Myles et al. proposed a method [13]
that can convert any quadrilateral mesh into a tangential continuous surface. Ni et al. proposed a method
for simulating the Catmull-Clark subdivision surface by c-patches [14].

Myles et al. proposed a method of supporting both pentagon, quadrilateral and triangular patches. The
characteristic of this method is using only the vertex shaders and collection shaders, not the fragment
shaders. And this method effectively converts the pentagon patch, the quadrilateral patch, and the triangle
patch into a partially parallel to any smooth surface composed of low-order polynomials with tangent and
curvature continuity [15]. Loop et al. used Gregory patch to achieve high quality and performance [16] of
mixed quadrilateral and triangular meshes, but approximate patch may introduce distortion [17] in the
parameter domain. Kovacs et al. propose a method for dealing with infinitely sharp creases, which is only
suitable for a specific use and may have a displacement mapping problem [18]. The Feature Adaptive
Subdivision (FAS) algorithm uses a hardware subdivision surface to process a normal face as a patch,
which take more time in the direct calculation. The Feature Adaptive Subdivision (FAS) algorithm uses a
hardware subdivision surface to process a common face as a patch, which takes more time in the direct
calculation. Schafer et al. use the Dynamic Feature Adaptive Subdivision (DFAS) algorithm to implement
the extension of the FAS algorithm [19] by allowing local adaptive subdivision within a single mesh. Fu

M. Wang et al. / Improved adaptive tessellation rendering algorithm S83

et al. consider the distance, screen space projection error and variance of the height, as the standard of
terrain roughness, during the tessellation stage. This algorithm can greatly reduce the CPU processing
time and main memory space requirement [20]. Zhang et al. propose a real-time terrain rendering method
with GPU tessellation that can effectively reduce the popping artefacts [21].

The human body model in the virtual surgery system is generally nested by multiple complex models,
and each model has quite complex tangent and curvature change. In actual rendering, if all details of
the human body model are rendered with high performance, it may cause the stutter due to insufficient
hardware performance. If the human body model is roughly rendered, the details of the model cannot be
well represented. In this paper, the improved adaptive surface subdivision algorithm optimizes rendering
speed and reduces the stuck phenomenon in rendering. This paper consists of four sections. The first
section introduces the development of the subdivision algorithm. The second section introduces the
adaptive tessellation rendering algorithm proposed in this paper. In the third section, the algorithm
proposed in this paper is tested in terms of speed, display and computational performance, and the
advantages of this algorithm are verified by comparison with other algorithms. This section also introduces
the application of the algorithm in the virtual surgery system. The fourth section is the conclusion.

2. Method

2.1. Adaptive tessellation rendering algorithm

The rendering algorithm based on surface subdivision is divided into offline part and online part. The
offline part mainly completes the reading of data and the establishment of data structure. The online
part performs surface subdivision operations in real time for each frame, which includes subdivision
operations of control points and surface evaluation.

Data reading in the offline part is entered using a Catmull-Clark groundmesh. This method is a recursive
bicubic B-spline subdivision algorithm which recursively generates surfaces to approximate points on an
arbitrary topological mesh. For a rectangular mesh, this method generates a standard B-spline surface.
Non-rectangular mesh, except for a few special points, this method generates a standard B-spline surface,
and the tangent and curvature are continuous, and at least the tangent is continuous at the singular point.

The offline part also includes a subdivision plan data structure created for the face of ground mesh,
the data structure including a quadtree for recording the subdivision level and an ordered list of control
point templates required to record the face. The quadtree directly reflects the adaptive subdivision of a
face. The internal nodes of the quadtree correspond to a recursive subdivision step, and the leaf nodes
correspond to subdomains that can be effectively evaluated. Leaf node types include regular nodes, crease
nodes, special nodes, and terminal nodes. For the regular face, add all templates of the 16 control points
of the face to the template list, and generate conventional nodes corresponding to these templates. In
particular, faces with borders or sharp creases are also processed as conventional nodes; Semi-sharp
creased faces can be recursively subdivided to eliminate semi-sharp features. For faces with only one
half sharp creases, the faces can be directly more efficiently subdivided, and such faces are stored as
crease nodes, treated like conventional nodes to process 16 control points, and mark the edge of the
crease, record the sharpness with floating point number; If the preset subdivision depth is reached and
the face that can be evaluated directly has not been traversed, we need to create a special node. The
special node corresponds to an unconventional vertex at the corner of the base mesh face, and the special
node corresponds to three templates of the unconventional top, the three templates including the extreme
position at the corner and the template of the two tangent lines; For a face without a semi-sharp feature

S84 M. Wang et al. / Improved adaptive tessellation rendering algorithm

tag, a terminal node is introduced around the unconventional vertex, and the terminal node collapses the
n levels of the hierarchy by a fixed 3n regular node or boundary node and a special node. In particular,
the special node is a terminal node with n = 0. The terminal nodes store 24 control points per level,
distributed over a 5 × 5 mesh. Each terminal node also needs to store a rotation value that specifies the
corner of the corresponding unconventional vertex within the parameter domain.

The quadtree maps the u, v locations to subdomains that can be directly evaluated (e.g. regular nodes),
and the leaf nodes in the quadtree indirectly reference the required control point templates, each template
encoding the control points as weighted sum of one ring vertex, which guarantees the individual use of
each template. Use the subdivision plan to store the list of one ring vertices for each face. Since floating
point addition is not associated, the calculation of control point values is sensitive to the order of the one
ring vertices. When evaluating, each weight must be arranged once to correspond to the ordered list of
vertices. We propose to simplify the sorting operation by using the weight adjacency matrix.

The processing of the online part is that each frame of dynamic effects is processed through the pipeline.
The online part consists of two processes: the first is to obtain the required sub-control points in the hull
shader; the second is to perform curved surface evaluation in the domain shader.

For each control point, we map the scale of the viewport to the minimum subdivision level of the
control point through the function n = dlog2dfee (f is the maximum subdivision surface factor of the
original surface). Finally, the set of control points for each patch is obtained in the hull shader. At runtime,
the original surface settings and tessellation stages are applied to each base mesh face using a hull shader.
The hull shader calculates the tessellation factor for edges and interiors and the corresponding control
points required for surface evaluation. The segmentation operation then applies the template to the control
points required for all n segmentation levels. The subdivision step only calculates the control points, and
the topology of subdivided face is stored in the quadtree. Each control point is computed as a convolution
of the weights in its template with the one ring vertex of the original surface. In general, you can get the
one ring vertices directly in memory, and we improve the performance of the algorithm by using hardware
vertex pipeline storage to flatten the cost of the face sharing the vertices. A typical GPU supports 32
vertices as input to the hull shader. When there are more than 32 vertices in one ring vertices, we can also
use vertex pipelines. Additional vertices can bypass the vertex shader and get directly from memory.

Surface evaluation is performed in the domain shader. The so-called surface evaluation is to map
the control points obtained by the subdivision into vertices in the world coordinate system that can be
directly rendered. In the surface evaluation phase, the subdivision plan, the control points output by the
hull shader, and the parameter positions of the vertices provided by the hardware subdivision are the
inputs, then traverse the quadtree and apply surface evaluation to different nodes with different evaluation
methods, finally we get the subdivision surface S(u, v). We traverse the quadtree through an iterative loop
and a greedy algorithm. Different traversal methods for different nodes include: (1) for the internal nodes,
the traversal is performed until the child node containing the position parameter, and the domain of the
corresponding child node is positioned to the position parameter, if the position parameter falls between
the child nodes, then we select a child node near the inner side; (2) for a particular node, calculate the final
position and normal of the vertex by acquiring the extreme position and tangent control points associated
with the node; (3) for the regular nodes, the crease nodes, and the terminal nodes, when traversing to a
node that can be directly evaluated, the position and crease data of 16 control points are marked and then
directly evaluated using a shader. When traversing to the terminal node, calculate the correct child face
(subdomain) with the same logic as directly evaluating.

The evaluation method at the node that can be directly evaluated. Defining initial control vertices of the
surface patch through CT

0 = (c0,1, . . . , c0,K) is shown in Fig. 1.

M. Wang et al. / Improved adaptive tessellation rendering algorithm S85

Fig. 1. Evaluate the situation of different nodes.

Fig. 2. Fine molecular spatial distribution.

By subdivision, it generates a set of M = K + 9 vertices that are superimposed on the initial vertices.
The subset of these new vertices is the control vertices of three uniform B-spline patches. Therefore,
three-quarters of the surface patch is parameterized and can be evaluated as a simple bicubic B-spline
curve which expressed by vertex sets CT

1 = (c1,1, . . . , c1,K) with C
T
1 = (CT

1 + c1,K+1, . . . , c1,M). The
lower corner on the left side of the equation represents the sequence number of the patch, the lower
corner on the right is labeled 1, ×, 1 and the lower left corner mark have the same meaning, and x is the
control point number in the patch. Using these matrices, the subdivision step is multiplied by the K ×K
ordersubdivision matrix A, i.e. C1 = AC0. The additional point required to evaluate three B-spline
patches is to use a larger M ×K matrix A. Repeat the subdivision step to create an infinite sequence of
control vertices Cn = ACn−1 = AnC0 and Cn = ACn−1 = AAn−1C0, n > 1. For the subset of the
vertices of each level of Cn are integrated into the control vertices of the three B-spline patches. These
control vertices define Bk,n = PkCn, k = 1, 2, 3 according to choosing 16 control vertices from Cn.
The surface patch corresponding to each matrix of the control vertices can be defined as:

Sk,n(u, v) = BT
k,nb(u, v) = CT

nP
T
k b(u, v) (1)

Where (u, v) ∈ Ω, n > 1, k = 1, 2, 3. More formally, the unit square Ω is divided into an infinite patch
{Ωn

k} , n > 1, k = 1, 2, 3, as shown in Fig. 2. Construct the parameterized subdivision surface for the
limited definition of each patch Ωn

k through S(u, v):

S(u, v)|Ωn
k

= Sk,n(tk,n(u, v)) (2)

The feature matrix of the subdivision matrix A is defined as a set of eigenvalues and eigenvectors. The
feature matrix can be represented as (Λ, V), whereis a diagonal matrix containing the eigenvalues of A,

S86 M. Wang et al. / Improved adaptive tessellation rendering algorithm

V is an invertible matrix, and each of its columns corresponds to the eigenvector of A. The calculation of
the eigenmatrix is equivalent to the solution of the following matrix equation:

AV = VΛ (3)

The i-th diagonal element Λ is aneigenvalue of a corresponding eigenvector having an i-th column
equal to the matrix V (i = 1, . . . ,K).

The eigenvalues of the subdivision matrix are the eigenvalues of the joint diagonal block, and the
eigenvectors of the subdivision matrix should have the form of

V =

(
U0 0
U1 W1

)
.

If the matrix is replaced by their respective blocks Λ and V , we can get the following matrix equation:

S11U0 + S12U1 = U1

∑
(4)

The inverse of the eigenvector matrix is equal to:

V −1 =

(
U−1

0 0
−W−1

1 U1U
−1
0 W−1

1

)
(5)

Then Eq. (3) can be written as A = V ΛV −1. This decomposition is a key result for building a surface
patch rapid evaluation program. Equation (1) can be written as: Sk,n(u, v) = Ĉ0Λn−1(PkAV)T b(u, v).
The right side of this equation is independent of the control vertices and the exponent n. Therefore, we
can pre-calculate this expression and define the following vectors:

x(u, v, k) = (PKAV)T b(u, v), k = 1, 2, 3 (6)

Then the equation for each patch can be expressed as:

Sk,n(u, v) = Ĉ0Λn−1x(u, v, k), k = 1, 2, 3 (7)

Let P T
i denote the row of C0, and the surface patch evaluation can be expressed as:

S(u, v)|Ωn
k

=

K∑
i=1

(λi)
n−1 xi (tk,n (u, v) , k)Pi (8)

Bicubic spline function x(u, v, k) can define a set of characteristic basis function for subdivision. For a
given eigenvalue λi, define the function ϕi under the domain Ωn

k : ϕi(u, v)|Ωn
k

= (λi)
n−1xi(tk,n(u, v), k),

where i = i, . . . ,K. In the case of the Catmull-Clark subdivision, the characteristic basis function of a
particular vertex is a piecewise bicubic polynomial, then Eq. (8) can be expressed as:

S(u, v) =

K∑
i=1

ϕi(u, v)pi (9)

This equation gives surface parameterization corresponding to any face of the control mesh, and Eq. (9)
also allows calculation of the surface derivative of random order feature base.

Evaluation of semi-smooth creases. Suppose a patch contains at most one single semi-smooth crease
and does not contain any unconventional vertices. The bicubic B-spline patch is evaluated using the tensor
product form of the parameters u and v, so a single semi-smooth crease label can be used to simplify
the problem to a curved case. The goal is to convert the control points of the cubic B-spline curve to
correspond exactly to the half-sharp crease rule of the Catmull-Clark subdivision.

M. Wang et al. / Improved adaptive tessellation rendering algorithm S87

Fig. 3. Flow chart of a subdivision rendering algorithm based on surface.

We use the refinement matrix R (or RP at the boundary of the curve) to improve the cubic B-spline
curve. The subdivision of initial curve control point P = (P0,P1, P2, P3)T is expressed as P ”

= RP , P
is defined as a B-spline control point. Matrix R and RP correspond to smooth and sharp Catmull-Clark
subdivision rules, respectively. Divide Cubic B-spline curve f(t) = N(t)P into two curves, infinite
sharp segment f∞(t) defined on 0 6 t 6 1 − 2−S and crease transition segment fS(t) defined on
1 − 2−S < t 6 1, where N(t) is a matrix containing cubic B-spline functions, t is an independent
variable, s is the sharpness, when the sharpness is infinity, it is represented by∞, f(t) represents the
cubic B-spline curve function sought. Then control point of two curve segments P∞ with PS are obtained
for direct evaluation of curves. The speculation curve is defined with control point PS , which is define in
t ∈

[
1− 2−S , 1

]
to exactly match the desired parameterized shape corresponding to the initial curve,

check if the feature structure of R and RP is full rank, define MS = (R−1)SRS
P and diagonalize it and

get RS
P = VRP

ΛS
RP
V −1
RP

with (R−1)S = V −1
R Λ−SR VR. We can get a simplified MS (where σ = 2S),

the role of MS is to convert the input control point to a control point with a sharpness of s.f(t) is given
by Eq. (10), the final S(u, v) is determined by Eq. (11).

f(t) =

{
N(t)M∞P 0 6 t 6 1− 2−S

N(t)MSP 1− 2−S < t 6 1
(10)

S(u, v) = (f0(u), f1(u), f2(u), f3(u))NT (v) (11)

After the surface evaluation, the control points obtained by the subdivision are mapped to the vertices
in the world coordinate system that can be directly rendered, and the mapped position and direction
are obtained, thereby displaying. Figure 3 is a flow chart of a subdivision rendering algorithm based on
surface.

2.2. Solution to the SIMT divergence problem

When traversing a quadtree, there will be a large number of cases where boundaries, creases, or
terminal nodes cannot be found. This situation affects the B-spline calculation, making it impossible to
filter through the common code path in the sub-domain, causing the Single Instruction Multiple Threads
(SIMT) to diverge, as shown in Figs 4 and 5. We construct a complete weighted directed graph based
on the quadtrees formed by different subdivision levels. The weights correspond to the changes of the
subdivision levels, and then use the greedy algorithm to find the weighted shortest path of any two graph
nodes. The method can complete the search for the crease node or the terminal node in the polynomial
time, which can improve the search precision and the running speed.

S88 M. Wang et al. / Improved adaptive tessellation rendering algorithm

Fig. 4. Example 1 of SIMT divergence.

Fig. 5. Example 2 of SIMT divergence.

3. Results and discussion

3.1. Speed performance of adaptive tessellation rendering algorithm

We use the classical model (Stanford Bunny) in animation rendering as the speed test model of the
surface subdivision-based rendering algorithm. The demonstration mode is a designed loop action, and
the mean value of the cyclic frame number is analyzed and processed as the number of frames of different
subdivision levels. During the running process of the program, the change of the number of frames is
recorded by changing the subdivision level, and the subdivision level 1 to the subdivision level 20 are
selected. The speed performance of the tessellation rendering algorithm is tested by analyzing the number
of frames displayed at different subdivision levels. The test results are shown in Fig. 6. Subdivision

M. Wang et al. / Improved adaptive tessellation rendering algorithm S89

Fig. 6. Frame number curve.

Fig. 7. Mesh number curve.

level 1 to subdivision level 4 are periods of overperformance. This is because the hardware performance
of the computer can completely handle the number of meshes of these subdivision levels, and better
rendering effect can be achieved by hardware acceleration. At this stage, the number of frames of the
traditional tessellation algorithm is higher than the adaptive tessellation algorithm proposed in this paper,
the reason for this phenomenon is that the basis computational complexity of the adaptive tessellation
algorithm is higher than that of the traditional tessellation algorithm, so the traditional tessellation
algorithm is better than the adaptive in the lower subdivision level. However, the test results show that
the number of frames in both methods is above 100 frames, so the performance difference between
the two algorithms does not affect the actual rendering effect. Subdivision level 5 to subdivision level
11 is the performance degradation phase. Since the number of meshes increases by a factor of four
for each level of subdivision in the subdivision process, the number of meshes increases exponentially
with the increase in the level of the subdivision, as shown in Fig. 7. It can be seen from Fig. 6 that the
performance of the traditional tessellation algorithm decreases exponentially with the increase of the
subdivision level in the performance degradation stage. When the subdivision level reaches 11, there
will be a stutter phenomenon. The performance of the tessellation algorithm decreases linearly with the
increase of the subdivision level. When the subdivision level reaches 11, the performance will remain at
around 30 frames. Therefore, at this stage, the performance of traditional subdivision algorithms is much
lower than that of adaptive subdivision algorithms. Subdivision levels 12 to 20 are periods of insufficient
performance. Due to the high level of subdivision at this time, the number of meshes has reached a large

S90 M. Wang et al. / Improved adaptive tessellation rendering algorithm

Table 1
Comparison of performance between traditional tessellation algorithm and adaptive tessellation algorithm

Performance Traditional tessellation algorithm Adaptive segmentation algorithm
Initial mesh number 368 368
Basic method of tessellation Catmull-Clark subdivision surface Catmull-Clark subdivision surface
Limit breakdown level 11 20
Number of frames in extreme segmentation Stuck 21

Fig. 8. Subdivision level 1.

Fig. 9. Subdivision level 10.

number of values and forcing the rendering of so many meshes is prone to program crashes and screen
stagnation. In the stage of insufficient performance, the program of the traditional tessellation algorithm
is close to collapse, and the picture cannot be upgraded. The number of frames of the adaptive tessellation
algorithm decreases linearly. When the subdivision level is 20, it can be maintained at around 30 frames.
Therefore, at this stage, the performance of the traditional tessellation algorithm is much lower than that
of the adaptive tessellation algorithm. The performance comparison between the traditional tessellation
algorithm and the adaptive tessellation algorithm is shown in Table 1.

M. Wang et al. / Improved adaptive tessellation rendering algorithm S91

Table 2
Tessellation geometry performance

Subdivision
algorithm

Subdivision
speed

Precisely
bounded
surface

Continuity
Is there an exact
attribute value
at the edge?

Whether it is
suitable for meshes

with boundaries

Whether it is
suitable for half

sharp creases
Position Normal

vector
Stam [10] Slow

√
Second order
continuous

× × × ×

PN-triangles [2] Medium × Continuous
√

×
√

×
Bezier patch [12] Medium × Continuous

√
×

√
×

Adaptive segmenta-
tion algorithm

Fast
√

Second order
continuous

√ √ √ √

Fig. 10. Subdivision level 20.

3.2. Display performance of adaptive tessellation algorithm

Figure 8 to 11 are display effects of the model at the subdivision level 1, level 10, level 20, and the
subdivision level 30, respectively. In this process, as the number of meshes increases, the surface of the
model becomes more and more fine and maintains good geometric properties. The display performance
rendered using the adaptive tessellation algorithm is compared with the display performance of the Stam
algorithm, the PN-triangles algorithm, and the Bezier patch algorithm, which include: subdivision speed,
precise boundary of the surface, geometric surface continuity, whether expression attribute values at the
edges and the adaptability of special surfaces. The comparison results are shown in Table 2. It can be seen
from Table 2 that the adaptive tessellation algorithm is not only superior to other subdivision algorithms
in subdivision speed, but also has a wide application range. The subdivided surface geometry properties
are not only tangent continuous, but also have continuity of curvature.

3.3. Computational performance of adaptive tessellation rendering algorithm

Sharma and Batra propose to use the real root isolation algorithm to improve the running time of
the subdivision algorithm. The basic operation of tessellation is O(logn), they use the Newton graph to
calculate O(n) in each iteration, and use Taylor displacement O(nlogn) performs approximate calculation,
and the time complexity of using the algorithm to implement tessellation is O(n2 log σ). and σ < 1 [22].

S92 M. Wang et al. / Improved adaptive tessellation rendering algorithm

Fig. 11. Subdivision level 30.

Fig. 12. Basic operation flow of soft tissue rendering in virtual surgery system.

The tessellation algorithm proposed in this paper is related to the basic operation amount O(logn) of
traversing the quadtree in terms of time complexity, and also depends on the running time of traversing the
quadtree. We greatly reduce the time complexity by using the greedy algorithm. The algorithm is related
to the three operations Insert, Extract_Min, and Decrease_key in the Fibonacci heap. In the Fibonacci
heap, Extract_Min’s amortization time is O(lgV), and Decrease_ key’s amortization time is O(1). So the
running time of the algorithm includes: line 1-3O(|G.V|), line 4O(1), line 5O(1), line 6O(|G.V|), line 7
of loops, line 8 of running time O(G.VlgG.V), line 9 running time O(G.V), the total running time in a
10-line cycle is O(G.E).The optimized total running time is only O(VlgV+E), while the running time
before timization is exponential. In summary, when the subdivision level is low, the time complexity of
the adaptive tessellation algorithm is O(n(log n)2), the time complexity is higher when the subdivision
level is higher O(n2 log n). Therefore, the performance of the adaptive tessellation algorithm is better
than the time complexity of the Sharma and Batra algorithms when the subdivision level is low.

3.4. Application of adaptive tessellation algorithm in soft tissue model rendering of virtual surgery
system

The steps of applying the adaptive tessellation algorithm to the virtual surgery soft tissue model
include: (1) reading the muscle model information including the topological relationship of each vertex,

M. Wang et al. / Improved adaptive tessellation rendering algorithm S93

Fig. 13. Subdivision level 1 thigh rendering effect.

Fig. 14. Subdivision level 10 thigh rendering effect.

the characteristic label, and the vertex position. Input this data information into the vertex shader and
process the vertices into surfaces in the vertex shader. (2) Create a data structure for each sub-surface that
indicates the subdivision level of the feature surface. This data structure includes a quadtree structure
that reflects the tessellation hierarchy and an ordered list of control point templates for tessellation. (3)
In the subdivision stage, use the hull shader to calculate the edge of each base mesh sub-surface, the
internal surface subdivision factor and the control points required for tessellation. The specific steps
include defining the rendering using OpenGL library functions. Each patch input of the pipeline consists
of 16 vertices. Then the control points of each subdivision surface are calculated by a recursive algorithm,
and the control point information is stored in the corresponding nodes of the quadtree, and the tessellation
level is recorded. Each recursion produces a subdivision hierarchy, and we use the internal node (I) to
record each recursive hierarchy generated. When the recursive subdivision produces a regular surface, the
template of the 16 control points corresponding to the regular surface is added to the template list and
generate the regular nodes (R) of these templates. The R node is stored in the frame buffer, and X, Y, and
Z store three components of the control point position, and N stores the normal vector. If the traversal
reaches the set subdivision depth but does not reach the sub-surface corresponding to the final position,
then a special node (E) is created, which corresponds to the corner of the base mesh surface and is a
special vertex (EV). We calculate the template at the extreme position of the corner and the two tangent
lines and add them to the template list. For each subdivision level, the established quadtree has three
regular nodes and one internal node and establishes a terminal node (T) at the highest level, indicating
that the subdivision is terminated. The template is used to encode the control points as the weighted sum
of the vertices of the one ring neighborhood, and the template is represented by a weighted array. The
one ring neighborhood vertex can be directly read in memory, and a 16*16 matrix is used to store the
weights of all one ring vertices in order to record the topological relationship between the vertices and
the correspondence between the weights and the control points. The weights corresponding to the one
ring vertex and its control points are read from the weight relationship matrix, and their convolutions are

S94 M. Wang et al. / Improved adaptive tessellation rendering algorithm

calculated to obtain the reference position of the subdivided vertices. (4) In the domain shader, we will
traverse the quadtree to get the position of the control point, the normal vector and the vertex reference
position of the hull shader output as input, and the final renderable vertex position, normal vector and
the topological relationship of all vertices. Find all child nodes by traversing the internal nodes. When
the traversed child node is an R node, the control point position and the normal vector are output, and
the domain shader maps to the final renderable vertex position and normal vector. When the traversed
child node is an E node, the domain shader directly outputs the control point position and the normal
vector. The traversal is terminated when the child node traversed is a T node. The basic operation flow of
the adaptive tessellation rendering algorithm applied to the soft tissue rendering of the virtual surgery
system is shown in Fig. 12. Figures 13 and 14 show the thigh rendering effects of subdivision level 1 and
subdivision level 10, respectively. The proposed adaptive tessellation rendering algorithm in this paper
aims to have improved performance in the aspects of display, computation, and speed compared to the
traditional tessellation algorithm.

4. Conclusion

This paper proposes an adaptive tessellation rendering algorithm, which uses the quadtree to record
the surface subdivision hierarchy and uses the control template to record the control point information
to simplify the complex surface subdivision steps. The algorithm uses a matrix to record topological
relationships and vertex weights between vertices, reducing computation time. The algorithm associates
the quadtree of each subdivision level by the graph algorithm and uses the greedy algorithm to compress
the time complexity of traversing different subdivision levels of the quadtree to O(nlogn). The adaptive
tessellation rendering algorithm proposed in this paper is compared with the traditional tessellation
algorithm and the current excellent tessellation algorithm. The proposed algorithm has advantages in
display performance, computational performance and speed performance when the subdivision level is
high. Applying the adaptive tessellation rendering algorithm to the real-time rendering of soft tissue of
virtual surgery system, while rendering excellent solid animation, it also greatly improves the response
speed of virtual surgery system calculation and rendering.

Acknowledgments

This research was supported by NSFC (No. 61972117).

Conflict of interest

None to report.

References

[1] Doo D, Sabin M. Behaviour of recursive division surfaces near extraordinary points. Computer-Aided Design. 1978;
10(6): 356-360.

[2] Loop CT. Smooth Subdivision Surfaces Based on Triangles. Department of Mathematics the University of Utah Masters
Thesis, 1987.

M. Wang et al. / Improved adaptive tessellation rendering algorithm S95

[3] Nasri AH. Polyhedral subdivision methods for free-form surfaces. Acm Transactions on Graphics. 1987; 6(1): 29-73.
[4] Hoppe H, Derose T, Duchamp T, et al. Piecewise smooth surface reconstruction,Conference on Computer Graphics and

Interactive Techniques. ACM. 1994: 295-302.
[5] Derose T, Kass M, Truong T. Subdivision surfaces in character animation. Conference on Computer Graphics and

Interactive Techniques. ACM. 1998: 85-94.
[6] Forsey DR, Bartels RH. Hierarchical B-spline refinement. ACM. 1988: 205-212.
[7] Cook RL, Carpenter L, Catmull E. The Reyes image rendering architecture. AcmSiggraph Computer Graphics. 1987;

21(4): 95-102.
[8] Schäfer H, Raab J, Keinert B, et al. Dynamic feature-adaptive subdivision. I3D. 2015: 31-38.
[9] Keinert B, Fisher M, Stamminger M, et al. Real-Time Rendering Techniques with Hardware Tessellation. Computer

Graphics Forum. 2016; 35(1): 113-137.
[10] Stam J. Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values. 1998: 395-404.
[11] Bolz J, Der P. Rapid evaluation of Catmull-Clark subdivision surfaces. International Conference on 3d Web Technology.

DBLP. 2002: 11-17.
[12] Loop C, Schaefer S. Approximating Catmull-Clark subdivision surfaces with bicubic patches. Acm Transactions on

Graphics. 2008; 27(1): 1-11.
[13] Myles A, Yeo YI, Peters J. GPU conversion of quad meshes to smooth surfaces. Spm Proceedings of the Acm Symposium

on Solid & Physical Modeling. 2008; 321-326.
[14] Ni T, Yeo Y, Myles A, et al. GPU smoothing of quad meshes. IEEE International Conference on Shape Modeling and

Applications. IEEE. 2008: 3-9.
[15] Myles A, Ni T, Peters J. Fast parallel construction of smooth surfaces from meshes with tri/quad/pent facets. Symposium

on Geometry Processing. Eurographics Association. 2008: 1365-1372.
[16] Loop C, Schaefer S, Ni T. Approximating subdivision surfaces with Gregory patches for hardware tessellation. ACM.

2009: 1-9.
[17] He L, Loop C, Schaefer S. Improving the Parameterization of Approximate Subdivision Surfaces. Computer Graphics

Forum. 2013; 31(7): 2127-2134.
[18] Kovacs D, Mitchell J, Drone S, et al. Real-time creased approximate subdivision surfaces. Symposium on Interactive 3d

Graphics and Games. ACM. 2009: 155-160.
[19] Schäfer H, Raab J, Keinert B, et al. Dynamic feature-adaptive subdivision. I3D. 2015: 31-38.
[20] Fu HH, Yang HM, Chen CY. Large-scale terrain-adaptive LOD control based on GPU tessellation. Alexandria Engineering

Journal. 2021: 2865-2874.
[21] Zhang LW, She JF, Tan JZ, et al. A Multilevel Terrain Rendering Method Based on Dynamic Stitching Strips. Isprs

International Journal of Geo-Information. 2019; 8(6).
[22] Sharma V, Batra P. Near optimal subdivision algorithms for real root isolation. Journal of Symbolic Computation. 2015:

331-338.

