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Abstract.
BACKGROUND: The inverse problem algorithm (IPA) uses mathematical calculations to estimate the expectation value of a
specific index according to patient risk factor groups. The contributions of particular risk factors or their cross-interactions can
be evaluated and ranked by their importance.
OBJECTIVE: This paper quantified the potential risks from multiple biological factors by integrated case studies in clinical
diagnosis via the IPA technique. Acting as artificial intelligence field component, this technique constructs a quantified
expectation value from multiple patients’ biological index series, e.g., the optimal trigger timing for CTA, a particular drug in
blood concentration data, the risk for patients with clinical syndromes.
METHODS: Common biological indices such as age, body surface area, mean artery pressure, and others are treated as risk
factors upon their normalization to the range from −1.0 to +1.0, with a non-dimensional zero point 0.0 corresponding to the
average risk factor index. The patients’ quantified indices are re-arranged into a large data matrix. Next, the inverse and column
matrices of the compromised numerical solution are constructed.
RESULTS: This paper discusses quasi-Newton and Rosenbrock analyses performed via the STATISTICA program to solve
the above inverse problem, yielding the specific expectation value in the form of a multiple-term nonlinear semi-empirical
equation. The extensive background, including six previous publications of these authors’ team on IPA, was comprehensively
re-addressed and scrutinized, focusing on limitations, stumbling blocks, and validity range of the IPA approach as applied to
various tasks of preventive medicine. Other key contributions of this study are detailed estimations of the effect of risk factors’
coupling/cross-interactions on the IPA computations and the convergence rate of the derived semi-empirical equation viz. the
final constant term.
CONCLUSION: The main findings and practical recommendations are considered useful for preventive medicine tasks
concerning potential risks of patients with various clinical syndromes.
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1. Background

This study quantified the potential risk from multiple biological factors by integrating six case studies
on clinical diagnosis based on the IPA (inverse problem algorithm) approach. The latter has been widely
used in modern research in the last decade due to its unique feature in predicting the biological index from
a group of patients’ risk factors, immediately alerting medical doctors to take precautions against acute
syndromes. The IPA uses mathematical calculations to estimate the expectation value of a specific index
according to patient risk factor groups. Furthermore, the contributions of particular risk factors or their
cross-interactions can be evaluated and ranked by their importance [1–6]. Unlike the Taguchi optimization
algorithm, which is used to optimize one purpose from a combination of multiple factors [7–10], IPA
directly estimates the expectation value from a group of data. Thus, IPA provides more quantified
information than Taguchi’s approach, suggesting just the optimal combination of factors.

A practical application of IPA usually starts from the expectation value definition, which can be the
concentration of a particular drug in the patient’s blood [3], the severity of coronary artery [2], carotid
stenosis [4], or even the optimal CTA timing for head and neck scanning [5,6] as well. The IPA is operated
according to numerous data of the patient’s biological index. Thus, the precise estimation of expectation
value is made by the numerical analysis of a specific inverse matrix. The rank of the original data matrix
can be defined as [N × M]. Then, the corresponding inverse matrix is expanded to [N · M × N · M],
yielding the solution via the IPA technique. For instance, for 300 patients with six risk factors, the original
data matrix will be [300 × 22], with six risk factors corresponding to 22 terms of the semi-empirical
formula. The corresponding inverse matrix has to be expanded to [6600 × 6600] in the computer’s
memory buffer, yielding the compromised solution via quasi-Newton analysis [11] or Rosenbrock [12]
analyses. However, such computations are hindered by the CPU’s analytical ability limitations. Further
development succeeded in the last decade due to extra-computational powers obtained, so that IPA could
be executed to proceed with the respective research.

Six IPA-related research topics are evaluated in this study. Each study used five, six, or seven biological
indices, and the adopted patients’ number varied from 100 to 1001. In the overview of the IPA technique,
we provided a flowchart to illustrate the general idea of how researchers apply IPA in application of
artificial intelligence and how to convert the risk factor into dimensionless numerical digits with the
normalization process. In the discussion section, we elaborate on the outcomes of the STATISTICA
program, interpret risk factors’ cross-interactions, and discuss the IPA procedure’s convergence.

2. An overview of IPA

2.1. IPA flowchart

Figure 1 illustrates the flowchart of IPA operation in application of artificial intelligence. As depicted,
the quantified expectation value of the project must be defined first, and then the number of risk factors
should be preset. Noteworthy is that the adopted factors have to maintain their orthogonality to each
other. In addition, the estimated expectation value must be verified through another group of patients’
data to ensure its accuracy. Any failure in verifying or checking the program outcomes (loss function,
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Fig. 1. The flowchart of specific workload illustrating how researchers apply the IPA technique in application of artificial
intelligence.
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variance, or correlation coefficient) from STATISTICA necessitates to go back to the preliminary stage
in re-defining the risk factors or increasing the number of patients’ data because the program may not
converge to an acceptable range due to the limited data scope.

2.2. Assigning the essential risk factors

The semi-empirical formula, as recommended by IPA, includes five to seven individual factors that
cannot be derived from each other. For instance, weight and body mass index (BMI) cannot be assigned
as two independent factors in one study since BMI can be derived from the patient’s weight and height
W/H2 [kg/m2]. In contrast, the systolic blood pressure (SBP) and diastolic one (DBP) can be integrated
as MAP = (SBP + 2 · DBP)/3, with the mean arterial pressure (MAP) is a resulting biological index for
the risk factor [13]. If the number of risk factors is less than five, the researchers are recommended to add
body surface area (BSA) as additional factor since the pharmacokinetic model always relies heavily on
the patient’s body surface according to the metabolic mechanism. In contrast, BMI dominantly attenuates
the radioactive dose or imaging quality from the external point source. Thus, it is quite rarely used in
most IPA-related studies.

2.3. Defining the semi-empirical formula

Multiple terms are also fixed once the number of risk factors is determined. The semi-empirical formula
contains only contributions from the factor and the cross-interactions between two factors. Therefore,
neither triple (v1×v2×v3, or v1×v2×v4, etc.) nor quadruple (v1×v2×v3×v4, or v1×v2×v3×v5,
etc.) cross-interactions among factors are considered, while all residual multiple cross-interactions are
merged into the final constant term as minor oscillation to reach convergence of the numerical solution.
The semi-empirical formulas for seven, six, and five terms, yielding the respective expectation values v8,
v7, and v6, are given below:

v8 = a1× v1 + a2× v2 + a3× v3 + a4× v4 + a5× v5 + a6× v6 + a7× v7

+ a8× v1× v2 + a9× v1× v3 + a10× v1× v4 + a11× v1× v5

+ a12× v1× v6 + a13× v1× v7 + a14× v2× v3 + a15× v2× v4

+ a16× v2× v5 + a17× v2× v6 + a18× v2× v7 + a19× v3× v4

+ a20× v3× v5 + a21× v3× v6 + a22× v3× v7 + a23× v4× v5

+ a24× v4× v6 + a25× v4× v7 + a26× v5× v6 + a27× v5× v7

+ a28× v6× v7 + a29 (1)

v7 = a1× v1 + a2× v2 + a3× v3 + a4× v4 + a5× v5 + a6× v6 + a7× v1× v2

+ a8× v1× v3 + a9× v1× v4 + a10× v1× v5 + a11× v1× v6 + a12× v2× v3

+ a13× v2× v4 + a14× v2× v5 + a15× v2× v6 + a16× v3× v4 + a17× v3× v5

+ a18× v3× v6 + a19× v4× v5 + a20× v4× v6 + a21× v5× v6 + a22 (2)

v6 = a1× v1 + a2× v2 + a3× v3 + a4× v4 + a5× v5 + a6× v1× v2 + a7× v1× v3

+ a8× v1× v4 + a9× v1× v5 + a10× v2× v3 + a11× v2× v4 + a12× v2× v5

+ a13× v3× v4 + a14× v3× v5 + a15× v4× v5 + a16 (3)
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The coefficient matrix [a1, a2 . . . aN ] can be constructed via the inverse problem algorithm as defined
below.

First assume that in a linear equation y = βx, x is the input value, y is the expected value, and β is the
sensitivity of y to x. Next, consider a similar correlation between the input data matrix Vij (V) and its
expected column matrix yi (Y) via the following column matrix of coefficients (A):

Y = V ·A (4)∣∣∣∣∣∣∣∣∣∣∣

y1
y2
y3
...
yn

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

v11 v12 · · v1m
v21 v22 · · v2m
v31 v32 · · v3m

...
...

...
...

...
vn1 vn2 · · vnm

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

a1
a2
a3
...
am

∣∣∣∣∣∣∣∣∣∣∣
(5)

Assuming that Φ is a standard loss function, we get:

set Φ = ||V a− Y ||22 (6)

then ∇aΦ = 2(V T · V a− V TY ) = 0 (7)

V T · V a = V TY (8)

a = (V T · V )−1 · V T · Y (9)

Here the dataset matrix-vector is V [case number × coefficient term], while its transpose matrix is
denoted as V T . Using L’Hospital rule, which implies that extreme values of any function correspond to
zero values of its differential, this kernel function’s extremes are derived by assuming a zero first-order
differential of the loss function in Eq. (7). Next, the coefficients’ column matrix an is constructed via
Eqs (5)–(9) and the inverse matrix (V T · V ). The STATISTICA program facilitates deriving the minimum
loss function (customized by the user) and the sought-for compromised solution.

2.4. Normalization of risk factors

Each risk factor must be normalized to become dimensionless before its input into the STATISTICA
program. This ensures that the contribution from each factor can be equally dealt with although technically
the program can be run without normalization. Each risk factor needs to be converted into the same range
between −1.0 and +1.0. Therefore, the averaged normalized data of all patients’ equals exactly 0.0. In
addition, the minimal and maximal values become −1.0 and +1.0, respectively, after the normalization.
The respective conversion has the following form:

X∗ =
X − Xmax+Xmin

2
Xmax−Xmin

2

(10)

As denoted, the X∗ is restricted from −1.0 to +1.0 and becomes dimensionless. For instance, the
recorded weights for all patients’ groups are 45, 110, and 77.5 kg for minimal, maximal, and average
values, respectively. Then, the newly convertedX∗ values become−1.0, +1.0, and 0.0 after normalization.
In addition, the original patient’s weight of 90 kg is eventually converted to 0.385. The normalization is
crucial to eliminate the physical meaning and become a pure numerical digit for further computation in
the STATISTICA program.



S74 S.-H. Huang et al. / Potential risk quantification from multiple biological factors via the IPA

Fig. 2. A typical STATISTICA program in function. The user needs to follow the suggested option and define the unique loss
function to obtain the coefficients matrix according to the IPA technique.

2.5. Running the STATISTICA default program

STATISTICA 7.1 version [14] was run to realize the inverse program algorithm, yielding the kernel
function [14]. Correlations and cross-interactions among the risk factors were analyzed via user-defined
regressions and first-order nonlinear models. Data from the primary group of specific patients were
normalized and fed into the numerical tests for the loss function customization. Alternatively, Simplex
or Rosenbrock pattern search techniques could yield converged solutions for these loss functions, while
deriving the minimum loss function necessitated involving the Rosenbrock or quasi-Newton integrated
approaches. Figure 2 depicts a typical STATISTICA program in function. The user needs to follow the
suggested option and define the unique loss function to obtain the coefficients’ matrix according to the
IPA technique. The STATISTICA program is fully compatible with EXCEL, so the original data can
be calculated and arranged in EXCEL and then copied to STATISTICA for further analysis to save the
processing time.

3. Integrated review of the IPA technique

3.1. Integrated study of quantified prediction of expectation

Table 1 shows the integrated evaluation of the IPA-related papers. As depicted, the expectation value
may be the serum creatinine index after contrast administration for the patient with cardiac diagnosis [1]
or digoxin reading after the patient was administered digoxin [3]. Nevertheless, the expectation values in
the same study could be either the maximal ratio of both left-and-right-arterial-to-upper sinuses (LRA/US)
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Table 1
Six IPA- related papers were integrated and evaluated in this study. The following acronyms were used: BSA is body surface area,
BUN is blood urea nitrogen level, CRP is C-reactive protein, CTA-TT is the suitable triggered timing of computer tomography
angiography, CMS is contrast media solution, CMD is contrast media dosage, LDL-C is low-density lipoprotein-cholesterol,
LRA/US is the maximal ratio of both left-and-right-arterial-to-upper sinuses, and Pre is the specific pressure of the injector for
CMD

References
[1] [2] [3] [4] [5] [6]

Expectation value Serum creatinine after
administering CMS

Coronary
artery stenosis

Digoxin
reading

Carotid
stenosis

LRA/US CTA-TT

Risk factor BSA Age BSA Age CTA-TT Age
Administered CMS BSA BUN LDL-C MAP MAP
Serum creatinine
before administering
CMS

MAP Creatinine MAP Heart rate HR

BUN Sugar AC Na ions Sugar
AC

CMS CMD

Systolic blood
pressure

LDL-C K ions CRP Pre Pre

Mg ions BSA BSA
MAP

Original patient’s number 70 93 168 217 216 802
Verified patient’s number 30 45 45 55 35 199
Loss function 0.235 3.589 2.175 2.3543 2.0144 4.4084
s2, variance 0.9855 0.7955 0.8920 0.8746 0.9313 0.8965
r2 of actual vs. predicted line 0.986 0.795 0.892 0.875 0.931 0.897

or suitable triggered timing of computer tomography angiography (CTA-TT) [5,6]. Yet, the preliminary
study of LRA/US helps to confirm the correlation among CTA-TT with other risk factors. Thus, a large
group of patients was recommended to collect the data for further analysis of CTA-TT in the follow-up
study. Eventually, the derived semi-empirical formula can provide instant estimation for patients who have
undergone CTA examination. Most risk factors are biological indices collected in routine examination,
such as Age, BSA, Sugar AC, or MAP. The number of patients for further verification is strongly suggested
as 1/5 to the original patient’s number to create the database of STATISTICA 7.1. The loss function is
defined as (OBS-PRED)2, whereas Y and V ·A are observed (OBS) and predicted (PRED) expectation
values, respectively, in a clinical study (cf. Eq. (6)). A small loss function is always preferable to imply an
excellent numerical analysis outcome and conclude with high variance, s2 and coefficient of correlation,
r2. Accordingly, serum creatinine can be precisely estimated after CM administration [1] since r2 reaches
as high as 0.986 (1.00 is the maximal), and even in the worst case among all, r2 still holds 0.795 in the
study of Pan et al. [2]. The accurate estimation of either coronary artery or carotid stenosis helps cardiac
doctors to grasp the principle in clinical diagnosis before having any interventional examination [2,4].
Nevertheless, an appropriate trigger timing for CTA preset essentially reduces the exposed dose (CTA
trigger timing range from 20 down to 2 sec) for patients who underwent routine examination [6].

3.2. Interpretation of coefficients of risk factors

The obtained coefficients of risk factors from STATISTICA running imply the importance of the
specific risk factor. The personal biological examination’s original data of risk factors are normalized to
eliminate their dimensionality. Therefore, Age, BSA, MAP, and all other factors’ data become converted
into integer values between −1.0 and +1.0. Thus, the derived coefficient of any specific risk factor
can reflect its dominance in the semi-empirical formula. For instance, if coefficient of factor A is four
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Fig. 3. (A) A × B has a vertical vector to both A and B and points upward, while the directional vector of C × D points
downward; (B) Large constant term (implied by the central ball) of the semi-empirical formula can be treated as a stable average
of the expectation value of all the individual patients, whereas (A) shows a comparatively small constant term (i.e., relatively
large oscillation).

Fig. 4. The mathematical phenomena of convergence in IPA technique presumption. If the large constant dominates the IPA
performance, the compromised solution series may rapidly damp to a stable position. Otherwise, it takes a long computational
time to converge.

times more significant than that of factor B, then the contribution of A exceeds that of B by four times.
Moreover, factor B can be treated as a minor factor in the expectation value in preventive medicine.

3.3. Cross-interactions among factors

In some special cases, the individual factor may not offer a dominant contribution to the expectation
value. In contrast, cross-interactions among factors can strongly dominate the performing. According to
IPA computational presumption, the cross-interaction between two factors (A and B) can be interpreted
as A × B and mathematically defined as a cross-product (A × B) with a vertical vector to both A
and B, as depicted in Fig. 3A. As clearly illustrated, A × B has a vertical vector to both A and B,
which points upward, whereas the directional vector of C × D points downward, as shown in Fig. 3A.
Furthermore, the assigned vector of either factor itself or cross-interaction among factors creates a specific
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Fig. 5. (A) The X-, Y-, and Z-axes represent BSA (1.19∼2.36 m2), MAP (40∼158 mmHg), and Age (30∼96 y), respectively,
whereas HR, CMD and Pre. were preset at 69/min, 52 cc, and 132 mmHg, respectively. (B) The most dominant risk factors
(CRP, glucose AC, and MAP) were arranged along the Z-, X-, and Y-axes in seven frames to predict the carotid stenosis risk via
the IPA technique.

path along the vector to follow for optimizing the compromised solution in the computational model [15].
Thus, additional terms in the semi-empirical formula provide more alternative paths for optimizing the
compromised solution.
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3.4. The IPA prediction convergence

A sizeable constant term in the semi-empirical formula is always preferable in the IPA predictions.
Although it reduces the accuracy of estimation, it indicates the system stability in pursuing a compromised
solution via numerical analysis. As illustrated in Fig. 3B, a constant term in the semi-empirical formula
can be treated as the average expectation value of all individual patients. In contrast, contributions of
other terms in the formula are either dominant (terms with large coefficients) or minor (terms with small
ones) respectively to the outcome. Specifically, Fig. 3A shows a comparatively small constant value. In
other words, other large coefficients might dominate the formula’s performance and cause more time to
optimize the compromised solution. Figure 4 interprets the mathematical phenomena of convergence in
IPA presumption. Once a large constant dominates the IPA performance, the compromised solution series
may rapidly damp to a stable value. Otherwise, a long computational time is required for its convergence.
However, a large constant also indicates a minor alignment that can be achieved in optimizing the solution.
Noteworthy is that only in the study of Pan et al. [1], the rank of constant (rank 14/16) was less than
any others, namely, ranks 6/16, 7/29, 5/16, 5/22, and 6/22, respectively in the studies [2–6]. Thus, the
optimized loss function, Φ (cf. Eq. (6)) in [1] was as low as 0.235, yielding a high correlation coefficient
r2 = 0.986, whereas other loss function fluctuated about 2.014–4.408 values (cf. Table 1). In addition,
the low loss function might be due to small constant term to have a large oscillated range in optimizing
the final solution, whereas high loss function can be effectively suppressed by increasing the number
of patient’s data, since more original data help greatly in constructing the correct coefficient matrix for
solving IPA.

3.5. The application of IPA in preventive medicine

A simple visualization of the IPA technique prospects in preventive medicine can be obtaining by
plotting the IPA calculated outcomes via a ladder diagram [4,6]. In doing so, three dominant risks are
assigned as X-, Y-, and Z-axis, respectively. The other risk factor is set as 0.0 after normalization because
0.0 implies an average value of that specific factor (cf. Eq. (10)). Thus, the preset scenario describes a
general case of patients. Figure 5, (A) presents IPA-based timing optimization of head and neck CTA
for 1001 patients in 2020–2021, whereas the respective ladder diagram represents BSA (from 1.19 to
2.36 m2) in the X-axis, MAP (from 40 to 158 mmHg) in the Y-axis, and age (from 30 to 96 years) in
the X-axis, with HR, CMD, and Pre preset at 69/min, 52 cc, and 132 mmHg, respectively (i.e., 0.0 after
normalization) [6]; (B) The carotid stenosis risks for 272 patients with ischemic stroke symptoms were
analyzed via the IPA technique, with the dominant risk factors (C-reactive protein, glucose AC, and MAP)
aligned in seven frames along the Z-, X-, and Y-axes, respectively [4]. The benefit of drawing a ladder
diagram is that it can visualize the IPA-provided information and furnish the medical staff with an instant
quantified index for referring before having precise computation from the STATISTICA program.

4. Conclusions

This paper re-addressed and integrated six previous studies of these authors, focusing on the validity
range and stumbling blocks of the inverse problem algorithm implementation into artificial intelligence
and computer-aided medical applications. The integral part of this technique’s practical realization was
normalizing several risk factors’ indices, thus eliminating their various dimensionalities and yielding a
quantified integer data interval from −1.0 to 1.0, with the middle point, 0.0, corresponding to the average
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risk factor. The IPA technique recommends five to seven factors to ensure the expectation value. The
value could be a digoxin reading or any index of the clinical syndrome. Within framework of the robust
designation procedure, either expectation value or risk factor must be quantified to create the digital data
matrix for the STATISTICA program to analyze and then interpret with medical definition. The IPA
technique expands the horizon of exploring potential syndromes in application of artificial intelligence.
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