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Abstract.

BACKGROUND: Currently, chronic obstructive pulmonary disease (COPD) significantly impacts patients’ quality of life and
survival as it has a high morbidity and mortality rate. COPD progression is associated with infiltration of adaptive inflammatory
immune cells that form lymphatic follicles into the lung.

OBJECTIVE: The rapid development of single-cell RNA sequencing technology (scRNA-seq) provided us with powerful tools
for studying the classification of cell subtypes. Additionally, it is known that COPD is closely related to the abnormal function of
long-chain non-coding RNAs (IncRNAs), and scRNA-seq can help to study the expression of IncRNA from a single cell level.
METHODS: We reanalyzed the scRNA-seq data of peripheral blood mononuclear cells of COPD patients downloaded from
Gene Expression Omnibus (GEO) database, and performed the mRNA-based and IncRNA-based single cell clustering to compare
the cell subsets in COPD and controls without COPD. Furthermore, we performed Gene Ontology (GO) enrichment analysis for
the top ranked differentially expressed genes and target genes of differentially expressed IncRNAs in different cell subtypes for
COPD and controls respectively.

RESULTS: Differences in cell subtypes were found between COPD and controls.

CONCLUSION: This study may help us to further understand the mechanism of the human adaptive immune cell response of
COPD.
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1. Introduction

Currently, chronic obstructive pulmonary disease (COPD) is still the main cause of incidence rate
and mortality, which seriously affects the quality of life and survival of patients [1]. Although smoking
is the main potential cause of COPD, only a small number of chronic and severe smokers develop
symptomatic COPD [2]. In the lower airways, COPD is characterized by an abnormal immune response
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and its progression is related to the infiltration of innate and adaptive inflammatory immune cells,
which form lymphoid follicles and enter the lung [3]. More and more evidence shows that cellular-
and antibody-mediated autoimmunity plays an important role in the pathogenesis of stable COPD [4].
Therefore, the potential role of autoimmune reaction in the pathogenesis of exacerbation of COPD is still
under study. As a heterogeneous disease, the epithelial and immune cells contribute to their potential
effects in different clinical phenotypes of COPD. Pulmonary inflammation of COPD is characterized
by both innate and adaptive immune responses; However, their roles in the pathogenesis of COPD are
unclear. T lymphocytes are one of the main kinds of immune cells that mediate adaptive cellular immune
responses. It is reported that T/B lymphocytes and group 2 innate lymphoid cells (ILC2s) play a role in
airway collagen deposition/fibrosis in experimental COPD, but not in inflammation [5]. The cytotoxic
Iymphocytes in the airways of COPD patients were observed increase and a recent study reported that
the increase in the proportion of Natural Killer (NK) cells in BAL fluid were associated with COPD.
Interestingly, the percentage of NK cells in COPD subjects who quit smoking did not normalize, indicating
that even after quitting smoking, these cells may play a role in the continuous disease progression of
COPD [6].

Currently, the rapid development of single-cell RNA sequencing technology (scRNA-seq) provided us
with powerful tools for studying the classification of cells and help understanding the heterogeneity at the
cell-type level [7]. In addition, it is known that COPD are closely related to the abnormal function of
long-chain non-coding RNAs (IncRNAs) [8]. Recent evidence suggested that IncRNAs play fundamental
roles in immune regulation [9]. The scRNA-seq will help to study the expression of IncRNAs from a
single cell level.

In this study, we reanalyzed the scRNA-seq data obtained from peripheral blood mononuclear cells
of COPD patients, which were downloaded from GEO database. We performed the mRNA-based and
IncRNA-based single cell clustering to compare cell subsets in COPD and controls without COPD. Based
on mRNAs, cells were clustered into 13 and 19 subtypes for COPD and controls respectively. Based
on the heterogeneity of IncRNAs, cells were clustered into 8 and 11 subtypes for COPD and controls
respectively. Further analysis of the differentially expressed mRNAs and IncRNAs between different cell
subtypes combining with the IncRNA-target gene information revealed the potential differences in cell
subtypes between COPD and controls. Furthermore, we performed the GO enrichment analysis for the
top ranked differentially expressed genes and target genes of differentially expressed IncRNAs for COPD
and controls respectively, and the function differences of cell subtypes were also observed. However,
when cells were clustered by IncRNAs, we found that there was no significant demarcation between
of cell subsets, indicating some of their continuity and consistency. This study may help us to further
understand the mechanism of the human adaptive immune cell response of COPD.

2. Materials and methods
2.1. Data download

The data was downloaded from the GEO database (https://www.ncbi.nlm.nih.gov/gds/), and the ac-
cession ID is GSE130148 [10]. The transcripts per million (TPM) format data were selected. The lung
tissues of 4 subjects were included: one is COPD patient and the other three were controls without COPD.
The sing cell sequence data were obtained from 4 Illumina HiSeq 4000 (Homo sapiens), and the number
of total cells is 10,360. The detailed information of these four subjects is shown in Table 1.
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Table 1
The detailed information of four subjects
ID Gender Age Smoker Segment COPD The number of cells
Muc3843 Male 62  Yes, > 100py Lower lobe, left COPD Gold II 2189
Muc4658 Male 58  Yes, 45 py Upper lobe, left No 3314
Muc5103 Male 58 No Main brochus No 2485
Muc5104  Male 69  Yes, > 60 py Upper lobe, left No 2372

2.2. Extraction of IncRNAs expression matrix

We applied GENCODE annotation. [11] to extract IncRNAs expression matrix. In GENCODE annota-
tion, the genes with gene_type of “lincRNA” were selected, and the corresponding expression matrix was
extracted.

2.3. Data processing

2.3.1. Determine the number threshold of mRNAs and IncRNAs

Here, the quality control (QC) to filter cell indicators includes the following points: (1) Consider
the low-quality cells usually contain only a small number of genes, we need determine the number
of individual genes detected in the cell. (2) In order to set an appropriate number threshold, we need
to observe the number of independent genes detected by cells and the total amount of expression for
mRNAs or IncRNAs detected in the cell. Here, the numbers of total expression of mRNAs for COPD and
controls are all more than 3000, and therefore the number threshold of mRNAs is determined as 3000.
The numbers of total expression of IncRNAs for COPD and controls are all more than 40, and therefore
the number threshold of IncRNAs is determined as 40.

2.3.2. The data normalization

The mRNAs and IncRNAs expression of each cell were normalized. The global scale standardization
method named “lognormalize” is used. This method standardizes the characteristic mRNAs and IncRNAs
expression of each cell by the total expression and multiplies it by a scaling factor (10000 by default),
and the log transformation is then performed [12].

2.3.3. Identification of highly variable features (mnRNAs or IncRNAs)

Next, we identified a series of highly variable features (mRNAs or IncRNAs) between cells. These
features are highly expressed in some cells whereas displayed the low expression in other cells, and
the standard deviation of their expression is relatively large. It is implemented with findvariablefeatures
function in Seurat package of R software (https://www.r-project.org/). Some features will be used for
downstream analysis, such as Principal Component Analysis (PCA).

2.3.4. Data scaling

We performed linear transformation for data scaling, which is a standard method before dimension
reduction such as PCA. We used the scaledata function in Seurat to scale the expression of each feature
so that the average expression and the variance of this feature between cells is 0 and 1. This process gives
each highly variable feature in the downstream analysis the same weight with other features so that the
highly expressed features do not show their dominate effect.
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2.4. Cell clusters

2.4.1. Linear dimension reduction

In the present study, PCA is used for linear dimensionality reduction. The principal components (PC)
ranking the top can show the robustness of the data set. The jackstrawplot function in Seurat was used to
compare the p-value distribution of each PC with a uniform distribution, which determines the importance
of each PC. For mRNAs datasets of COPD and controls, we found that p-values increased stable after
the first 10 PCs, and the obvious turning points can be observed around the 9-10 PC. This indicates that
the first 10 PC can represent most of the information of the data set; we thus selected the first 10 PC for
further analysis. For IncRNAs datasets of COPD and controls, p-values increased significantly after the
first 5 PCs which means the importance decreased significantly, and the first 5 PC was thus selected.

2.4.2. Cell clusters and differentially expressed markers identification

The nonlinear dimensionality reduction method named t-distributed Stochastic Neighborhood Embed-
ding (¢-SNE) and Uniform Manifold Approximation and Projection (UMAP) were used to cluster cells.
t-SNE and UMAP are two algorithms used to embed scRNA-seq dataset into low-dimensional space and
to visualize the data [13]. The goals of these two algorithms are to learn the basic manifold of data to
gather similar cells in low-dimensional space. The cells were clustered using the FindClusters function
(resolution = 0.5) in Seurat for mRNAs datasets and IncRNAs datasets of COPD and controls respectively.
Finding markers (mRNAs or IncRNAs) of cell groups is an essential step in identifying cell groups. We
used findmarkers function provided by Seurat to find differentially expressed markers. The findmarkers
function specifies the cell cluster and all the other cell clusters were compared to identify the differentially
expressed markers. The parameter min.pct was set 0.25 which means at least 25% of cells are required to
express the markers to be tested in cell clusters. The main cell types according to the markers were then
identified from the CellMarker database (http://biocc.hrbmu.edu.cn/CellMarker/index.jsp#).

2.5. GO Enrichment analysis

For the mRINAs datasets, in the comparison between each specified cluster and other clusters, the top
10 ranked differentially expressed mRNAs were selected. We performed the GO enrichment analysis
for all of these genes. For IncRNAs datasets, we extracted all of differentially expressed IncRNAs in the
comparison between each specified cluster and other clusters, and performed GO enrichment analysis
for the target genes of these IncRNAs. The GO enrichment was performed for COPD and controls
respectively. The target genes of IncRNAs were obtained from LncRNA2Target database [14] and P <
0.05 were considered significant. The clusterProfiler package of R software was used to implement this
analysis and visualize the results.

2.6. Identification of potential cell—cell interaction networks

For the most significant differentially expressed gene in the comparison between each specified cluster
and other clusters of COPD and controls, we applied CellPhoneDB (https://www.cellphonedb.org/)
database to construct the molecular interaction networks among the cell subtypes. CellPhoneDB [15]
is a Python-based computational analysis tool which can perform the cell-cell communication at the
molecular level, and can construct the molecular interaction networks among the cell subtypes. We then
combined with the CellMarker database which can map the genes to the corresponding cell subtypes to
get the cell-cell interaction networks. The Cytoscape software [16] was used to visualize the networks.
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Fig. 1. The flowchart of our work.

2.7. Pseudotime analysis

To further infer differentiation trajectories of cell subsets in COPD and controls, we performed the
pseudotime analysis for four subjects respectively. The algorithm is used to learn the expression patterns
of all genes to arrange each cell to its own development track. The calculation process includes choosing
genes that define a cell’s progress, reducing data dimensionality and ordering cells along the trajectory.
We applied monocle 2 package of R software to perform the pseudotime analysis.

2.8. Immune infiltration analysis

To evaluate the identified cell clusters, we used TIMER (https://cistrome.shinyapps.io/timet/) to estimate
the infiltration abundance of the six immune cells (B cells, CD4+ T cells, CD8+ T cells, Neutrphils
cells, Macrophages cells and Dendirtic cells). Expression matrix was constructed using the differentially
expressed genes obtained from another COPD expression profile data (GSM28386, platform: GPL96
[Hg-U133A]) which includes 22,283 genes from 18 COPD patients and 12 normal controls. We calculated
and compared the relative abundance of each cell cluster. The student-t test was performed to validate
whether the relative abundance of the cell clusters was different between COPD and normal controls, and
these results were compared with the identified cell clusters by scRNA-seq data analysis The flowchart of
our work is shown in Fig. 1.

3. Results
3.1. Cell clusters based on mRNAs datasets and IncRNAs datasets

For mRNASs datasets, cells were clustered into 13 clusters (0—12) and 19 clusters (0-18) for COPD and



S14 L. Anetal. / Comparison of cell subsets in COPD and controls based on single-cell transcriptome sequencing

A B

ses b EB BB
T YR
¥
9
TEEEEEEEEEREER
&~

o0 o
w 01
= z i
@& L2} 10
- 11
o 12
10 13
s 11 14
; : - 15
20 b = an 16
] . 17
18
'I'..
80
; Z 50
20 0 20 40
SNE_1
15
10
10 * 0
L |
P : 3
o4 .3
:. 2 ! o 4
3 2 ¥
= .5 =T i
* 8 ol
: s
T
s il ﬁ‘ =5
= 10
0
'
of 1§
5
A0 20 0 :
umaP_1 o 10 20

UMAP_1

Fig. 2. Cell clusters based on four datasets. (A) Cells were clustered into 13 clusters based on COPD mRNAs dataset (B) Cells
were clustered into 19 clusters based on mRNAs dataset of controls. (C) Cells were clustered into 8 clusters based on COPD
IncRNAs dataset (D) Cells were clustered into 11 clusters based on IncRNAs dataset of controls.

controls respectively (Fig. 2A and B). For IncRNAs datasets, cells were clustered into 8 clusters (0-7)
and 11 clusters (0-10) for COPD and controls respectively (Fig. 2C and D). We can see that there was
clear classification for clustered cell subtypes based on mRNAs datasets. However, there were no clear
boundaries for clustered cell subtypes based on IncRNAs datasets.

3.2. Comparison of cell subsets in COPD and controls based on mRNAs datasets

We identified differentially expressed genes between the specified cell clusters with the other cell
clusters. Then we applied CellMarker web tool and user-friendly web portal (www.lungcellatlas.org) to
mapping marker genes into cell subtypes. According to the top five ranked differentially expressed genes
distinguishing each cluster from other clusters, we identified some cell subtypes. For COPD patient,
CD8+ T cell characterized by high expression of TRBC2, CCLS5, CD2, CD3D and PTPRCAP (Fig. 3).
FOXN4+ cell characterized by high expression of MARCO. SLC16A7+ cell characterized by high
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Fig. 3. The distribution of five specific high expression genes in CD8+ T cell (The cluster 1). (A) TRBC2 (B) CCL5 (C) CD2 (D)
CD3D and (E) PTPRCAP.

expression of AGER. Oligdendrocyte cell characterized by high expression of XIST and NMEI. Ionocyte
cell characterized by high expression of FGL2, MARCKS and MS4A6A. Microglial cell characterized
by high expression of GNG11, CLDNS5, MMRNI1, TFF3 and IGFBP7. Ciliated cell characterized by
high expression of RSPH1, C200rf85, PIFO, C90rf24 and C110rf88. Mast cell characterized by high
expression of TPSD1, TPSAB1, CPA3, SLC18A2 and RGS13. Delta cell characterized by high expression
of TFPI2, CCDC80, PLA2G2A, PRG4 and RP11-572C15.6. However, other marker genes did not identify
a unique cell population.

For cell clusters of controls, CD1C-CD141 dendritic cell characterized by high expression of
APOBEC3A and CD300E. SLC16A7+ cell characterized by high expression of NAMPTL and TRAC
(Fig. 4A and B). FOXN4+ cell characterized by high expression of MARCO. Ionocyte cell character-
ized by high expression of FMO2. Ciliated cell characterized by high expression of RSPH1, C200rf85,
PIFO, C9orf24 and C110rf88. Delta cell characterized by high expression of PRG4 (Fig. 4C and D).
Endothelial cell characterized by high expression of FAM107A. Regulatory T (Treg) cell characterized
by high expression of IL2RA. Secretory cell characterized by high expression of SLC6A14 Epiblast cell
characterized by high expression of DCN, COL1A2, CCDC80, ADH1B and FBLN1. MKI67+ progenitor
cell characterized by high expression of CCL21, TFF3, LYVE1, MMRNI1 and ECSCR. However, other
marker genes did not identify a unique cell population. The comparison of cell subtypes between COPD
and controls is shown in Fig. 5. From Fig. 5A, we can see that the proportion of Delta cell is lower in
COPD than in controls. Figure 5B displays the heatmap of major marker genes and the corresponding
cell subtypes for COPD and controls. Figure 5C and D show the cell subtypes recognized based on
CellMarker database for COPD and controls respectively.
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Fig. 4. The expression and distribution of high expressed genes in specified cell clusters. (A) The expression level of TRAC in
different cell clusters. (B) The expression distribution of TRAC in SLC16A7+ cell (The cluster 2). (C) The expression level of
PRG4 in different cell clusters. (D) The expression distribution of PRG4 in Delta cell (The cluster 9).

3.3. Comparison of cell subsets in COPD and controls based on IncRNAs datasets

We also applied CellMarker web tool to mapping marker InRNAs into cell subtypes. For COPD
patient, cells were clustered into 8 subtypes based on IncRNAs dataset. Meanwhile, lung epithelial cell
characterized by high expression of SFTAIP (Fig. 6A and B). SLC16A7+ cell characterized by high
expression of PCED1B-AS1 and SNHG6 (Fig. 6C and D). Other marker IncRNAs did not identify a
unique cell population. For three control subjects, cells were clustered into 11 subtypes based on IncRNAs
dataset. Meanwhile, Natural killer T (NKT) cell characterized by high expression of SNHG9 (Fig. 6E and
F). SLC16A7+ cell characterized by high expression of PCED1B-AS1 (Fig. 6G and H). Other marker
IncRNAs did not identify a unique cell population. Compare COPD with controls, we found that the
identified cell subtypes all include SLC16A7+ cell. The two different cell subtypes are lung epithelial cell
for COPD and Natural killer T cell for controls.

3.4. GO enrichment analysis

After performed GO enrichment analysis, we showed the top 10 most significant GO-BP (Biology
Process) enrichment results. Some enriched GO terms were similar for two groups, such as regulation of
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Fig. 5. The comparison of cell subtypes between COPD and controls. (A) The proportion distribution of different cell subtypes in
COPD and controls. (B) The heatmap of major marker genes and the corresponding cell subtypes between COPD and controls.
Meanwhile, C indicates COPD patient whereas N indicates controls. (C) The clustered cell subtypes recognized based on
CellMarker database for COPD. (D) The clustered cell subtypes recognized based on CellMarker database for controls.

lymphocyte activation, positive regulation of cell adhesion and regulation of leukocyte cell-cell adhesion.
For COPD patient, the specified biological process focuses on respiratory gaseous exchange (Fig. 7A).
For controls, the specified biological process focuses on protein activation cascade (Fig. 7B). From the top
10 most significant GO-BP enrichment results for target genes of differentially expressed IncRNAs, some
slight differences were found between two groups. For COPD patient, the biological process focuses on
response to oxidative stress and cellular response to oxidative stress (Fig. 7C). For controls, it focuses on
cell junction and cell migration (Fig. 7D).

3.5. Identification of cell-cell interaction networks

For the most significant differentially expressed gene in the comparison between each specified cluster
and other clusters of COPD and controls, we applied CellPhoneDB database to construct the molecular
interaction networks among the cell subtypes. We then combined with the CellMarker database which can
map the genes to the corresponding cell subtypes to get the cell-cell interaction networks. The cell-cell
interaction networks of COPD and controls are shown in Fig. 8A and B respectively. From Fig. 8, it is
shown that the cell—cell interaction networks was dominated by CD8+ T cell in COPD patient and was
dominated by CD8+ T cell, Macrophage cell and Secretory cell in controls.
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Fig. 6. The expression and distribution of high expression IncRNAs in specified cell clusters. (A) The expression level of SFTA1P
in different cell clusters. (B) The expression distribution of SFTA1P in lung epithelial cell (The cluster 1). (C) The expression
level of PCED1B-AS1 and SNHG®6 in different cell clusters. (D) The expression distribution of PCED1B-AS1 and SNHG6 in
SLC16A7+ cell (The cluster 2). (E) The expression level of SNHG9 in different cell clusters. (F) The expression distribution of
SNHGO in Natural killer T (NKT) cell (The cluster 1). (G) The expression level of PCED1B-AS1 in different cell clusters. (H)
The expression distribution of PCED1B-AS1 in SLC16A7+ cell (The cluster 0, cluster 1 and cluster 2).
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Fig. 7. GO-BP enrichment results based on the top ranked differentially expressed mRNAs and target genes of differentially
expressed IncRNAs for COPD and controls respectively. (A) The top 10 most significant GO-BP terms based on the top ranked
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for COPD (D) The top 10 most significant GO-BP terms based on targets of differentially expressed IncRNAs for controls.
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Fig. 8. Cell-cell interaction networks. (A) For COPD patient, the cell—cell interaction network was dominated by CD8+ T cell.
(B) For controls, the cell-cell interaction network was dominated by CD8+ T cell, Macrophage cell and Secretory cell.

3.6. Pseudotime analysis for COPD and controls

To further infer the differentiation trajectories of cell subtypes in COPD and controls, we performed
pseudotime analysis for four subjects respectively. For COPD sample (Muc3843), the result reveals a
trajectory starting with FOXN4+ cell bifurcating into ciliated cell and CD8+ T cell (Fig. 9A and B). For
three controls, they showed the different trajectory. For example, for Muc4658 sample, there was no
obvious trajectory branch (Fig. 9C and D). For Muc5103 sample, the dendritic cell bifurcating into Delta
cell (Fig. 9E and F). For Muc5104 sample, there was no obvious trajectory branch (Fig. 9G and H).

3.7. Immune infiltration analysis

To compare and evaluate the identified cell clusters, we used TIMER web tool to estimate the infiltration
abundance of the six immune cells (B cells, CD4+ T cells, CD8+ T cells, Neutrphils, Macrophages and
Dendirtic cells) using the COPD microarray data. We calculated and compared the relative abundance
of each cell cluster using the student-t test. We found B cell, CD4+ T cells and CD8+ T cells showed
the significant differences between COPD and controls. Specially, CD8+ T cells showed the higher
immune infiltration abundance in COPD patients than in controls (P = 0.002), which is consistency
with the identified cell clusters by scRNA-seq data analysis (Fig. 10A). In addition, we applied ImmPort
database [17] to obtain immune-related genes, and 36 immune-related genes overlapped with identified
differentially expressed genes were taken as COPD immune-related genes. The correlation analysis
between the expression and immune infiltration abundance of these genes showed that CSPR1, LRP1,
OPRLI1 and GZMB are associated with CD4+ T cell. Meanwhile, OPRL1 and GZMB are also associated
with CD8+ T cell (Fig. 10B).

4. Discussion and conclusion

In this study, we reanalyzed peripheral blood mononuclear cells scRNA-seq data of COPD and controls
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Fig. 9. Pseudotime developmental trajectory analysis from Monocle depicting how each of the cell subtypes relates to each other
for COPD and controls respectively. (A) COPD (Muc3843) cell subtypes (B) COPD (Muc3843) trajectory analysis (C) Control
subject (Muc4658) cell subtypes (D) Control subject (Muc4658) trajectory analysis (E) Control subject (Muc5103) cell subtypes

(F) Control subject (Muc5103) trajectory analysis (G) Control subject (Muc5104) cell subtypes (H) Control subject (Muc5104)
trajectory analysis.
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Fig. 10. The immune infiltration analysis based on COPD microarray data. (A) The comparison of immune infiltration abundance
between COPD and Controls. (B) The correlation analysis between the expression and immune infiltration abundance of COPD
immune-related genes. The blue color indicates the high positive correlation whereas the red color indicates the high negative
correlation.

without COPD from GEO database. The cells were re-clustered into subgroups based on mRNAs and
IncRNAs, and the results suggested the differences in cellular heterogeneity between COPD and controls.
Compare clustered cell subtypes between COPD and controls based on mRNAs datasets, we found that
the cell subsets include: Lung epithelial cell, Micoglial cell, SLC16A7+ cell, FOXN4+ cell, Delta cell,
Mast cell, Ionocyte cell and Ciliated cell. Meanwhile, Ionocyte cell is suggested a pathological role in
bronchiectasis, and cystic fibrosis [18]. It is reported that the airway epithelium of COPD shows changes in
the differentiation of ciliated cells, at least partially through TGF-£31 [19]. For controls, the immune cell is
Regulatory T (Treg) cell compared with the immune cell of CD8+ T cell in COPD. It is known that CD8+
T-lymphocytes cell play a key role in the pathogenesis of COPD. A recent study found that compared with
healthy control group, the proportions of IFN-v+ and TNF-a+ CD8+ T cells in COPD patients increased
significantly. This study reveals the relationship between the Global Initiative for Chronic Obstructive
Pulmonary Disease (GOLD) stage and IFN-vy Or TNF-« expression for CD8+T cell [20]. We found the
identified two different cell subtypes based on IncRNA datasets are lung epithelial cell for COPD and
Natural killer T (NKT) cell for controls. NKT cells have become an important lymphocytes subgroup
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with pathogenicity in COPD. NKT cells are the bridge between innate and adaptive immunity. They have
the ability to promote or inhibit immune response [21].

After we performed the GO function enrichment analysis, we identified some significant enriched
GO terms. For COPD patient, the specified biological process focuses on respiratory gaseous exchange.
It is known that in the respiratory tract, immune homeostasis requires strict control mechanisms to
protect the important and fragile gaseous exchange barrier from uncontrolled and damaging inflammation,
or excessive immune response to harmless allergen, such as allergic asthma [22]. From the top 10
most significant enriched GO-BP terms based on target genes of IncRNAs, we found some differences
between COPD and controls. For COPD, the biological process specially focuses on response to oxidative
stress and cellular response to oxidative stress. In the practice, oxidative stress and inflammation are
considered to have contribute to the pathogenesis of COPD. A recent finding indicates that resveratrol
had a therapeutic effect related to inhibition of oxidative stress and inflammatory response in their rat
COPD model [23]. In addition, we constructed the cell-cell interaction networks for COPD and controls
respectively. It is shown that the cell-cell interaction network was dominated by CD8+ T cell in COPD
patient while was dominated by CD8+ T cell, Macrophage cell and Secretory cell in controls. This result
is consistency with the immune infiltration analysis in which CD8+ T cells showed the higher immune
infiltration abundance in COPD patients than in controls.

Although the identification of immune-related markers may provide insight into molecular mechanisms
regulating immune cells activity in COPD, this study is not without limitations. A major limitation is
the small sample size. On one hand, the cost of single cell sequencing is relatively expensive at present,
and most of the research groups just want to perform the explore study using the small sample size. On
the other hand, compared with the single cell sequencing data of tumors, the COPD-related data is a
serious deficiency. As more COPD-related single-cell sequencing data are available, we will perform
more in-depth data analysis to validate the reliability of the results. In addition, the lack of experiment
validation is another major limitation. In future studies, enlarged sample sizes and feasibility experiments
will be needed to validate these findings.
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