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Abstract.

BACKGROUND: Following the latest trends in the development of artificial intelligence (Al), the possibility of processing
an immense amount of data has created a breakthrough in the medical field. Practitioners can now utilize Al tools to advance
diagnostic protocols and improve patient care.

OBJECTIVE: The aim of this article is to present the importance and modalities of Al in maternal-fetal medicine and obstetrics
and its usefulness in daily clinical work and decision-making process.

METHODS: A comprehensive literature review was performed by searching PubMed for articles published from inception up
until August 2023, including the search terms “artificial intelligence in obstetrics”, “maternal-fetal medicine”, and “machine
learning” combined through Boolean operators. In addition, references lists of identified articles were further reviewed for
inclusion.

RESULTS: According to recent research, Al has demonstrated remarkable potential in improving the accuracy and timeliness
of diagnoses in maternal-fetal medicine and obstetrics, e.g., advancing perinatal ultrasound technique, monitoring fetal heart rate
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during labor, or predicting mode of delivery. The combination of Al and obstetric ultrasound can help optimize fetal ultrasound
assessment by reducing examination time and improving diagnostic accuracy while reducing physician workload.
CONCLUSION: The integration of Al in maternal-fetal medicine and obstetrics has the potential to significantly improve
patient outcomes, enhance healthcare efficiency, and individualized care plans. As technology evolves, Al algorithms are likely
to become even more sophisticated. However, the successful implementation of Al in maternal-fetal medicine and obstetrics
needs to address challenges related to interpretability and reliability.

Keywords: Artificial intelligence, machine learning, obstetrics, perinatology

1. Introduction

With the latest development of machine learning technology, our society witnessed remarkable progress
in the field of computer science [1]. Artificial intelligence (Al) is a technology that simulates human
intelligence in machines that are programmed to mimic human cognitive processes [1]. Machine learning
(ML), as a subset of Al, deals with the development of algorithms that enable computers to make
predictions or decisions without being explicitly programmed to perform such tasks. Finally, Deep
learning (DL) is a subfield of ML which utilizes deep neural networks (DNN5), inspired by the function
of human brain, to process and learn from data. DNNs are capable of learning high-level features from
raw data and this technology has been very successful in different applications such as image and speech
recognition, computer vision, and natural language processing [2].

Following the latest trends in the development of Al the possibility of processing an immense amount
of data has created a breakthrough in the medical field [3]. Considering that ultrasound (US) images
for almost all obstetric situations are available, Al applications for perinatal medicine are rapidly devel-
oping [4]. Practitioners now can utilize Al tools to advance diagnostic protocols and improve patient
care.

Even though Al seems to be a very recent trend, its forms have been applied in the medical field for
several decades [3]. One of the first Al programs called MYCIN was developed in the 1970s and it
was programmed to help with diagnosing bacterial infections and recommending appropriate antibiotic
treatments [5]. The development of computer-aided diagnostic systems for US images also started in the
1970s. However, the development of Al in perinatal US is currently still in early stages because fetal
US poses several unique challenges, such as the fetal mobility, the developing anatomy of the fetus, and
especially the requirement to obtain specific planes which can be limited by changes in fetal positioning
and variations in maternal body habitus [6].

Since 2015, there has been a resurgence of interest in maternal well-being research with machine
learning. Studies have been published on prenatal diagnosis, fetal heart monitoring, prediction and
management of pregnancy-related complications, the prediction of the delivery mode, delivery outcomes,
and outcomes after In vitro fertilization (IVF) treatment [7,8].

The integration of Al into the field of maternal-fetal medicine and obstetrics represents a significant
stride towards enhancing healthcare. Al has demonstrated remarkable potential in improving the accuracy
and timeliness of diagnoses in obstetrics [9]. Another promising aspect of Al in obstetrics is its capacity
to tailor care plans to individual patients. By analyzing a patient’s medical history, genetic factors, and
real-time health data, Al systems can formulate personalized treatment strategies [10]. This level of
customization not only improves patient outcomes but also reduces the risk of unnecessary medical
interventions Al simulations can mimic various case scenarios, from routine prenatal US to high-risk
deliveries, which can be used in education and training [11]. Al can also track a learner’s progress
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and identify areas of weakness, adapting the training content accordingly. These systems can provide
immediate feedback and even suggest the best course of action in each scenario.

Looking ahead, the future of Al in obstetrics holds promise for continued innovation. Advancements
in wearable devices and remote monitoring may enable real-time data collection, allowing healthcare
providers to intervene promptly in response to emerging issues [12]. However, despite the remarkable
potential of Al in obstetrics, these tools cannot be a substitute for clinical experience [8].

The aim of this article is to present the importance and modalities of Al in maternal-fetal medicine and
obstetrics and its usefulness in daily clinical work and decision-making process.

2. Materials and methods

We conducted a comprehensive literature review searching PubMed for articles published from incep-
tion up until August 2023, including the search terms “artificial intelligence in obstetrics”, “maternal-fetal
medicine”, and “machine learning” combined through Boolean operators. In addition, references lists of

identified articles were further reviewed for inclusion.

3. Perinatal ultrasound

ML was first applied to perinatal US several years ago. Thanks to this, it has become possible to
distinguish different body parts of fetus through machine learning [13]. The combination of Al and
obstetric US can help optimize fetal US examination by reducing examination time and improving
diagnostic accuracy while reducing physician workload that can lead to clinician burnout [14]. Currently,
there is a semi-automatic program for fetal US analysis that automatically takes standard biometric
measures after the sonographer selects an appropriate image of each body part [15]. Al has been
successfully applied to automatic fetal US standard plane detection, measurement of biometric parameters,
and disease diagnosis to facilitate conventional imaging approaches [16]. Automatic plane detection a
measurement of standard fetal biometric resulting in reduction of repetitive caliper adjustment clicks and
operator bias, as well as instant quality control [17].

In recent years, studies have been published that demonstrate the use of ML in the detection of fetal
central nervous system (CNS) abnormalities and congenital heart diseases (CHD) which showed potential
of Al in fetal anomaly scan [18].

Al-based technology showed reliability in identifying biometric planes, reporting the presence or ab-
sence of anatomic malformations, completing a basic US, and classifying a full fetal echocardiogram [19,
20,21]. However, the main flaw of Al equipment is that its diagnostic enactment was principally based on
the biased impression of investigative clinical sonographers [22]. In other words, all available data was
non-selectively considered as if all the examinations were performed by experienced examiners [23].

3.1. Fetal biometry and gestational age (GA)

Optimal prenatal care relies on accurate gestational age dating. After the first trimester, the accuracy of
gestational age estimation from fetal biometrics decreases with increasing gestational age [24]. Automatic
measurement of fetal biological parameters using Al can reduce inter- and intra-operator measurement
errors and promote clinical efficiency (Fig. 1) [16].
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Fig. 1. Automatic estimation of biometric parameters deviation from reference values for gestational age.

Burgos-Artizz et al. evaluated the performance of an Al method based on automated analysis of fetal
brain morphology on standard transthalamic axial plane to estimate the GA in second and third-trimester
fetuses compared with the current formulas using standard fetal biometry [25]. The Al method alone
yielded somewhat lower gestational age estimation errors than fetal biometric parameters, and errors were
even lower when the Al model was combined with biometric parameters [25]. The use of this Al model
offers better accuracy in GA estimation; however, there is still deviation when compared with dating by
Crown-rump length (CRL) measurement in the first trimester [25].

Grandjean et al. used the Smartplanes® software to identify the transthalamic plane from the 3D
volumes and perform biparietal diameter (BPD) and head circumference (HC) measurements auto-
matically [26]. These measurements showed good agreement with those obtained by two experienced
sonographers from conventional two-dimensional (2D) images and three-dimensional (3D) volumes.
This has the potential advantage of standardizing the measurement technique and therefore minimizing
inter-operator variability.

A novel feature-based model that regresses brain development to GA using fetal cranial US images
was developed by Namburete et al. [27]. Preliminary analysis identified age-discriminating brain regions
observable in fetal US images, i.e. the Sylvian fissure, callosal sulcus, and parieto-occipital fissure, all
of which have been reported as undergoing significant change during the gestational period [27]. The
estimated GA was close to the value obtained by clinical measurement, with the root mean square error
(RMSE) of £ 6.10 days in the second and third trimesters [27].

Lee et al. used Convolutional Neural Network (CNN) to analyze images from multiple standard US
views for GA estimation without any measurement information [28]. The best model estimated GA
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Table 1
Studies on Al aplication in fetal brain assessement
Study Technology Task Results
Miyagi et al. [35] CNN Recognition of fetal Accuracy of 99.6% for seven categories
expressions
Lin et al. [36] MF R-CNN FHSPs detection and US ~ Accurate quality assessment of an ultrasound plane
transfer learning ~ image quality assessment ~ within 0.5 second
Qu et al. [37] Differential CNN  Automated identification  Accuracy of 92.93%
of FHSPs
Xi et al. [38] DCNN FHSPs classification as Accuracy of 96% in classification; precision of 49.7%
normal or abnormal in lesion localization
Xie et al. [19] CNN based deep  FHSPs classification as Overall accuracy of 96.3% the sensitivity and
learning normal or abnormal specificity of 96.9% and 95.9%; respectively precision
of 61.6% in lesion localization
Lin et al. [39] CNN Recognition of 10 Mean accuracy of 99.2% in the internal validation

intracranial abnormalities  dataset and 96.3% in the external validation dataset
in standard planes

CNN - convolution neural network; MF R-CNN — multi-task learning framework using a faster regional convolutional neural
network; US — ultrasound; FHSP — fetal head standard plane; AUC — area under receiver operating characteristic curve.

with a mean absolute error of 3.0 (95% CI, 2.9-3.2) and 4.3 (95% CI, 4.1-4.5) days in the second and
third trimesters, respectively, which outperforms current US-based clinical biometry at these gestational
ages [28]. Moreover, it applies to both high- and low-risk pregnancies and people in different geographical
areas.

Gomes et al. developed mobile-optimized Al models that can help novices in low- and middle-income
countries assess GA and fetal malpresentation from freehand US sweeps [29]. Al GA estimates and
standard fetal biometry estimates were compared to a previously established ground truth and evaluated
for differences in absolute error; fetal malpresentation was compared to sonographer assessment [29].
They showed that the GA estimation accuracy of the Al model is non-inferior to standard fetal biometry
estimates, and the fetal malpresentation model has high area under the receiver operating characteristic
curve (AUC-ROC) across operators and devices [29]. Software run times on phones for both diagnostic
models are less than 3 seconds after completion of a sweep [29].

The nuchal translucency (NT) is the most essential marker for detecting Down syndrome during
the first trimester of pregnancy [30]. Moratalla et al. developed an Al algorithm for semi-automatic
NT measurements that achieved an inter-operator standard deviation of 0.0149 mm, lower than the
manual approach of 0.109 mm, significantly reducing inter- and intra-observer differences [31]. The
semi-automated approach, however, involves manual fine-tuning of the NT region, so researchers have
developed Al algorithms to achieve fully automatic measurements of NT thickness, with a classification
accuracy of 91.7% [32].

3.2. Fetal brain assessment

In numerous studies, Al has proven to be useful in fetal brain assessment which requires the observation
of several qualitative and quantitative parameters during an ultrasound examination (Table 1). The
Kurjak Antenatal Neurodevelopmental Test (KANET) scoring system can assess fetal neurobehavioral
development by assessing fetal movements and facial expressions (Figs 2—4) [33,34]. Al can enable
objective assessment of fetal facial expressions. The first reported study on this topic showed an accuracy,
reliability score, and ROC curve of Al fetal facial expression analysis of 0.996 for seven categories: eye
blinking, mouthing, neutral face, scowling, smiling, tongue expulsion, and yawning [35]. This study also
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Fig. 2. 3D US image of 28 weeks baby, hand-to-face movement.
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Fig. 3. 3D US image of 28 weeks baby, scowling.

acknowledged its limitations. Observation of the fetal face is time-consuming, there’s a lack of consensus
of image classification by examiners, and the perfect classification of fetal facial expressions has not yet
been established [35]. Also, the feasibility of recognizing fetal facial expressions using Al depends on
data supervised by experienced examiners. Finally, there are still faulty data sets such as for expressions
that are rarely seen during screening, such as sucking [35].

The acquisition of a standard plane is highly subjective and depends on the clinical experience of
sonographers. A multi-task learning framework proposed by Lin et al. used a faster regional convolutional
neural network (MF R-CNN) architecture for standard plane detection and quality assessment [36].
An MF R-CNN can identify the critical anatomical structure of the fetal head, analyze whether the
magnification of the US image is appropriate, and then perform a quality assessment of US images based
on clinical protocols [36]. By recognizing the key anatomical structure and magnification of the US
image, this method can accurately make a quality assessment of an US plane within half a second [36].

The differential CNN proposed by Qu et al. automatically recognized six fetal brain standard planes (the
horizontal transverse section of the thalamus, horizontal transverse section of lateral ventricle, transverse
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Fig. 4. 3D US image of 28 weeks baby, smiling.

section of cerebellum, midsagittal plane, paracentral sagittal section, and coronal section of the anterior
horn of the lateral ventricle) with 92.93% accuracy and high computational efficiency [37].

Various algorithms have been developed for the diagnosis of fetal brain abnormalities. Xie et al.
presented a model that used a U-Net to segment cranial regions and a VGG-Net network to distinguish
between normal and abnormal US images, helping to reduce the false-negative rate of fetal brain
abnormalities [38]. Xie et al. used a CNN-based DL model to distinguish between normal and abnormal
fetal brains with an overall accuracy of 96.31% [19]. Furthermore, the model was able to visualize the
location of the lesion through heat maps and overlapping images, which increased the sensitivity of
the essential clinical examination. However, both studies could only distinguish normal from abnormal
standard brain planes.

Lin et al. developed an Al system, the Prenatal ultrasound diagnosis Artificial Intelligence Conduct
System (PAICS), for the detection of different patterns of fetal intracranial abnormality in standard
sonographic reference planes for screening for congenital CNS malformations [39]. In this multicenter,
case-control, retrospective diagnostic study 43 890 images from 16 297 pregnancies and 169 videos
from 166 pregnancies were used to develop and validate the PAICS [39]. The system achieved excellent
performance in identifying 10 types of intracranial image patterns: non-visualization of the cavum septi
pellucidi, non-visualization of the septum pellucidum, crescent-shaped single ventricle, mild ventricu-
lomegaly, severe ventriculomegaly, non-intraventricular cyst, intraventricular cyst, open fourth ventricle,
mega cisterna magna, and the normal pattern [39]. The performance of the PAICS was comparable to
that of expert sonographers but required significantly less time [39]. Both in the image dataset and in
the real-time scan setting, the PAICS achieved excellent diagnostic performance for various fetal CNS
abnormalities [39]. The PAICS has the potential to be an effective and efficient tool in screening for fetal
CNS malformations in clinical practice [39].

3.3. Al in fetal echocardiography

Fetal heart US is highly specific and sensitive in experienced hands, however, antenatal detection
rates of CHDs remain lower than for most other major structural anomalies. Prenatal detection in some
countries is as low as 13% [40].

US imaging of the fetal heart is a challenging and complex task with a high degree of operator



1280 E. Medjedovic et al. / Al as a new answer to old challenges in maternal-fetal medicine and obstetrics

dependence. The first step in the diagnosis of CHD is obtaining the standard cardiac imaging planes. Al
can be used to automatically retrieve these planes from the US image data stream which is a potential
route to improving detection rates. Moreover, it could allow the sonographer to focus on identifying
abnormal anatomy, rather than pausing and saving standard planes [41]. Wu et al. proposed a deep
convolution neural network (U-Y-net) model which was shown to effectively recognize and classify many
important structures and the standard five sections of the fetal heart [42].

Arnaout et al. hypothesized that poor detection results from challenges in obtaining and interpreting
diagnostic-quality cardiac views and that deep learning could improve complex CHD detection. Using
107,823 images from 1,326 retrospective echocardiograms and examinations of fetuses aged 18 to 24
weeks, they trained a set of neural networks to identify recommended cardiac views and distinguish
normal hearts from complex CHD [20]. In a test set of 4108 fetal studies, the model achieved an AUC of
0.99, 95% sensitivity (95%CI, 84-99), 96% specificity (95%CI, 95-97), and 100% negative predictive
value in differentiating normal from abnormal heart [20]. In one study, combining noninvasive fetal
electrocardiography with Al for the automatic detection of CHD achieved a detection rate of 63% for all
CHD and 75% for critical CHD [43].

The CNN model was used to identify and classify key frames (the aorta, the arches, the atrioventricular
flows, and the crossing of the great vessels) of fetal heart echocardiography in the first trimester of
pregnancy [44]. A test accuracy of 95% with an F1-score ranging from 90.91% to 99.58% shows the
potential in supporting heart scans even from such an early fetal age [44]. Anda et al. proposed the use
of learning deep architectures for the interpretation of first-trimester fetal echocardiography (LIFE) to
recognize fetal CHD without using 4D sonography [45]. This project’s primary objective is to develop an
Intelligent Decision Support System that uses two-dimensional video files of cardiac sweeps obtained
during the standard first-trimester fetal echocardiography to signal the presence/absence of previously
learned key features [45].

Yeo et al. developed a Fetal Intelligent Navigation Echocardiogram (FINE) that, in conjunction with
Virtual Intelligent Sonographer Assistance, automatically generates nine standard fetal echocardiographic
views and intelligently identifies surrounding anatomical structures [46]. The FINE model could recognize
abnormal cardiac anatomy in four proven cases of CHD (coarctation of the aorta, tetralogy of Fallot,
transposition of the great vessels, and pulmonary atresia with an intact ventricular septum) [46]. In the
following studies FINE identified d-transposition of the great arteries and double-outlet right ventricle [47,
48]. When performed by non-expert sonographers, FINE has superior performance compared to manual
navigation of the normal fetal heart. Specifically, a study showed that FINE obtained appropriate fetal
cardiac views in 92-100% of cases [49]. Recently, eight novel and advanced features have been developed
for the FINE method with the goal of simplifying FINE further, allowing quantitative measurements
to be performed on the cardiac views generated by FINE, and improving the success of obtaining fetal
echocardiography views [50].

4. Fetal heart rate monitoring (FHR)

Perinatal asphyxia poses a difficult obstetric challenge which can be better handled by creating a more
efficient and reliable way to monitor FHR. Even though cardiotocography (CTG) monitors have been
widely used in the last 50 years, and standardized guidelines are available, inter- and intra-observer
variability and uncertainty in the classification of unreassuring FHR recordings are still present in clinical
practice [51,52]. Given the clinical relevance of FHR as a marker of fetal well-being and autonomous
nervous system development, many different approaches for computerized processing and analysis of



E. Medjedovic et al. / Al as a new answer to old challenges in maternal-fetal medicine and obstetrics 1281

Table 2
Artificial intelligence as a helpful tool in prediction of delivery
Beksac et al. [63] Supervised artificial neural network had specificity and sensitivity of 97.5% and 60.9% in
prediction of delivery
Wong et al. [64] Accuracy of predicting vaginal delivery at 4 hours was 87.1% for machine learning model

Lipschuetz et al. [65] Machine-learning algorithm can give personalized risk score for a successful vaginal birth after
cesarean delivery and can be helpful in decision-making and reduce cesarean delivery rates

FHR patterns have been proposed in the literature [53]. The opportunities offered by Al tools represent
the future direction of electronic fetal monitoring (EFM).

The INFANT study is a large trial evaluating the ability of Al interpretation of CTG during labor to
assist clinicians in deciding the best management for patients [54]. This technology could aid in making
FHR reading more reliable thus helping the practitioner in interpreting and decision-making process.
Furthermore, Al technology could be used for out-patient care in the form of home monitors that would
provide adequate surveillance of high-risk patients, potentially helping in earlier detection of pregnancy
complications.

Another study was conducted to develop an ML model that can identify high-risk fetuses (suspicious as
well as pathological states) as accurately as highly trained medical professionals [55]. Ten different ML
classification models were trained using CTG data of 2126 pregnant women in the third trimester [55].
The classification model developed using the XGBoost technique had the highest prediction accuracy for
predicting a pathological fetal state (> 92%) [55].

Spairani et al. proposed a hybrid approach based on a neural architecture that receives heterogeneous
data in input (a set of quantitative parameters and images) for classifying healthy and pathological
fetuses [56]. The quantitative regressors, which represent different aspects of the correct development of
the fetus, are combined with features implicitly extracted from various representations of the FHR signal
(images) [56]. The neural model with two connected branches, a Multi-Layer Perceptron (MLP) and a
CNN, was trained on a huge and balanced set of clinical data (14.000 CTG tracings, 7000 healthy and
7000 pathological) recorded during ambulatory nonstress tests [56]. After hyperparameters tuning and
training, the neural network proposed has reached an overall accuracy of 80.1% [56].

Still, when it comes to Al monitoring of the FHR during labor, its application did not show to improve
neonatal outcomes [57]. Similar technology is already available in the form of alert automation in
monitors for vital sign abnormalities in patients, but its application in everyday practice shows mediocre
results [58].

5. Mode of delivery

Mode of delivery is one of the issues that is of great concern in obstetrics. In the last 30 years, the
worldwide rate of cesarean section (CS) has increased progressively from 6 to 21% of all births [59],
exceeding the limit recommended by the World Health Organization. Besides different medical and
paramedical reasons for such an alarming increase of CS, it is a fact that obstetricians generally do
lack the necessary technology to help them decide on appropriate mode of delivery based on individual
antepartum and intrapartum conditions.

Using ML, several prediction models were trained to predict the mode of delivery (Table 2), including
spontaneous vaginal birth, instrumental delivery, emergency CS, and successful vaginal birth after
cesarean (VBAC), with the goal to help the obstetrician in making decisions regarding the appropriate
mode of delivery [60,61].
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A study published in 2022 tested the suitability of using three different Al algorithms to develop
a clinical decision support system for the mode of delivery prediction, using a large clinical database
consisting of 25,038 records of patients with singleton pregnancies [62]. All three implemented algorithms
showed a similar performance, reaching an accuracy equal to or above 90% in the classification between
vaginal and cesarean deliveries and around 86% for the classification between normal and instrumental
vaginal delivery [62].

Beksac et al. developed a supervised artificial neural network (ANN) for predicting the delivery
route [63]. During the admission of the patients to the delivery room, at the beginning of the first stage
of labor and after pelvic examination and evaluation of the mother and fetus, the input variables for the
ANN were obtained: maternal age, gravidity, parity, gestational age at birth, necessity and type of labor
induction, presentation of the baby at birth, and maternal disorders and/or risk factors [63]. The outputs
of the algorithm were vaginal delivery or CS. This system showed specificity and sensitivity of 97.5%
and 60.9%, respectively [63].

Another similar study published in 2022 presented the model that was found to be 87% accurate in
predicting a mode of delivery within four hours of patient being admitted to the hospital [64]. It was also
reported that the predictor factors that the AI model used mirrored the diagnostic factors that clinicians
use to predict a mode of delivery, such as stage of labor and cervix dilation measurement [64].

The algorithm’s ability to predict risks in early labor stages can help reduce adverse birth outcomes and
healthcare costs associated with maternal morbidity. This allows preventing a CS from being done if a
vaginal delivery is more likely, or preventing a patient from laboring for too long if the model predicts the
birth will more likely result in a CS anyway. Lipschuetz et al. developed a machine learning algorithm to
assign a personalized risk score for a successful vaginal birth after cesarean delivery. Applying the model
to a cohort of parturients who elected a repeat cesarean delivery (n = 2146), they observed that 32% of
these parturients would have been allocated to the low-risk group, had a trial of labor been attempted.
The low-risk group showed a success rate of 94.5% [65].

While having a previous vaginal birth strongly predicts VBAC, the delivery outcome in women with
only a cesarean delivery is more unpredictable. In another study, three machine-learning methods were
used to predict VBAC among women with one previous birth [66]. AUC-ROC ranged from 0.61 to 0.69,
with sensitivity (probability of correctly identifying a VBAC for the second delivery) above 91% and
specificity (probability of correctly identifying a repeat CS for the second delivery) below 22% for all
models [66]. The majority of women with an unplanned repeat cesarean had a predicted probability of
vaginal birth after cesarean > 60% [66].

5.1. Shoulder dystocia

Tsur and al. developed an ML model for the prediction of shoulder dystocia (ShD) and validated the
model’s predictive accuracy and potential clinical efficacy in optimizing the use of cesarean delivery in
the context of suspected macrosomia [67]. The study included 686 singleton vaginal deliveries in the
derivation cohort of which 131 were complicated by ShD, and 2584 deliveries in the validation cohort, of
which 31 were complicated by ShD [67]. The model predicted ShD better than estimated fetal weight
either alone or combined with maternal diabetes and was able to stratify the risk of ShD and neonatal
injury in the context of suspected macrosomia [67].

6. Preterm birth (PTB)

Ultrasonography cervical-length (CL) assessment is considered to be the most effective screening
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Table 3
Artificial intelligence as a helpful tool in prediction of preterm birth
Zhang et al. [71] Long short-term memory (LSTM) can be helpful in decision making during obstetric
examination (better prediction ability and a lower misdiagnosis rate)
Arabi Belaghi et al. [72] Artificial neural networks had slightly higher area under the receiver operating

characteristic curve than logistic regression in prediction of preterm birth

Goldsztejn and Nehorai [73]  Deep learning method can predict preterm birth for pregnant mothers around their 31st
week of gestation

Wiodarczyk et al. [74] Deep neural network with ultrasound data can be helpful in decision making process

Wiodarczyk et al. [75] Prediction of preterm birth based on transvaginal ultrasound images compared to state-of-
the-art methods

method for preterm birth (PTB), but routine, universal CL screening remains controversial because of its
cost [68]. Approximately 30% of preterm births are not correctly predicted due to the complexity of this
process and its subjective assessment [69]. In spite of proper screening based on CL measurement, current
screening strategies cannot identify a significant percentage of patients who will deliver prematurely.
In search of better methods of predicting preterm birth, researchers have investigated the application of
artificial intelligence in this area (Table 3). The studies suggest that when we incorporate different uterine
cervix assessment methods into the deep learning networks, we may improve the detection rates and
contribute additional information to identify women with true spontaneous PTB [69].

A systematic review of publications on Al use in the prediction of PTB showed that electrohysterogram
images were mostly used, followed by the biological profiles, the metabolic panel in amniotic fluid or
maternal blood, and the cervical images on the ultrasound examination. However, the size of the dataset
in most studies was a hundred cases and too small for learning [70].

Zhang et al. used continuous EMR data from pregnant women to construct a preterm birth prediction
classifier based on long short-term memory (LSTM) networks [71]. The data included more than 25,000
obstetric EMRs from the early trimester to 28 weeks of gestation. Compared with a traditional cross-
sectional study, the LSTM model in this time-series study had better overall prediction ability and a lower
misdiagnosis rate at the same detection rate. Accuracy, sensitivity, specificity, and AUC were 0.739,
0.407, 0.982, and 0.651, respectively [71]. Important-feature identification indicated that blood pressure,
blood glucose, lipids, uric acid, and other metabolic factors were important factors related to PTB [71].

In one study researchers used data during the first and second trimesters to build logistic regression
and machine learning models in a “training” sample to predict overall and spontaneous PTB [72]. They
identified 13 variables in the first trimester associated with PTB, of which the strongest predictors were
diabetes and abnormal pregnancy-associated plasma protein A concentration [72]. In the second trimester,
17 variables were significantly associated with PTB, among which complications during pregnancy
had the highest adjusted odds ratio (AOR) [72]. The maximum AUC was 60% (95% CI: 58—-62%) and
65% (95% CI: 63—66%) in the first and second trimesters, respectively, with artificial neural networks
in the validation sample [72]. Including complications during the pregnancy yielded an AUC of 80%
(95% CI: 79-81%). All models yielded 94-97% negative predictive values for spontaneous PTB during
the first and second trimesters [72]. They concluded that, although artificial neural networks provided
slightly higher AUC than logistic regression, the prediction of preterm birth in the first trimester remains
unattainable [72]. Nevertheless, prediction improved to a moderate level by both logistic regression and
machine learning approaches including data from the second trimester [72].

Goldsztejn and Nehorai developed a deep-learning method to predict preterm births directly from
electrohysterogram (EHG) measurements of pregnant mothers recorded at around 31 weeks of gestation.
Their model predicted preterm births with an AUC of 0.78 (95% CI: 0.76-0.80) [73]. Moreover, they
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found that the spectral patterns of the measurements were more predictive than the temporal patterns,
suggesting that preterm births can be predicted from short EHG recordings in an automated process [73].

The first work based on transvaginal ultrasound images that used ML algorithms was the work of
Witodarczyk et al. [74]. They used a deep neural network architecture to segment prenatal US images
and then automatically extracted two biophysical US markers, cervical length and anterior cervical angle
(ACA), from the resulting images [74]. Both biomarkers were used by doctors to manually assess the risk
of spontaneous PTB [74]. The results were then classified by classic ML algorithms. The best results were
achieved by the Naive Bayesi algorithm: accuracy of 77.5%, precision of 85%, and AUC of 78.13% [74].
The results of predicting spontaneous PTB were better than those presented by gynecologists [74].
Furthermore, they showed that CL and ACA markers, when combined, reduced the false negative rate
from 30% to 18% [74].

In another study, Wiodarczyk et al. proposed a conceptually simple CNN for cervical segmentation
and classification in transvaginal US images while simultaneously predicting PTB based on extracted
image features without human supervision [75]. The proposed model was trained and evaluated on a
dataset consisting of 354 2D transvaginal US images and achieved segmentation accuracy with a mean
Jaccard coefficient index of 0.923 £ 0.081 and a classification sensitivity of 0.677 + 0.042 with a false
positive rate of 3.49% [75]. Their method achieved better results in predicting PTB based on transvaginal
ultrasound images compared to state-of-the-art methods [75].

7. Limitations

Obstetrics and gynecology journals report mostly preliminary work (e.g. algorithm or proof-of-concept
method) in Al applied to this discipline, and clinical validation remains an unfulfilled prerequisite [9]. Al
is primarily well-defined as the study of algorithms. However, an algorithm is only as good as the data it
works with. If there is an error in the algorithm, then the potential for negative impact is high compared
to a single human error. It is also possible to inadvertently introduce unwanted bias into the algorithm,
which would obviously be unacceptable for medical applications [76]. A recent systematic review found
that most non-randomized trials in medical imaging are not prospective, have a high risk of bias, and
deviate from existing reporting standards [77].

8. Conclusion

The integration of Al in maternal-fetal medicine and obstetrics has the potential to significantly improve
patient outcomes, enhance healthcare efficiency, and individualize care plans. As technology evolves,
Al algorithms are likely to become even more sophisticated, potentially revolutionizing prenatal care
and fetal monitoring. However, the successful implementation of Al in obstetrics necessitates addressing
challenges related to interpretability and reliability.
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