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Abstract.
BACKGROUND: High installation and operating cost have limited applications for many circumstances. In practice, primary
and shielding coils cannot insert into the magnet pole simultaneously owing to deficient workspace for the planar permanent
MRI systems
OBJECTIVE: To minimize eddy currents induced in the resist-eddy current plates and pole piece when the gradient coil current
switches on and off rapidly.
METHODS: A theoretical framework that have minimum power dispassion and magnetic energy with eddy plate is proposed
for a planar gradient coil. The mirror image of the magnetostatic model is substituted into the stream function for designing a
minimum power dispassion planar gradient coil. A finite-difference is used to formulate the coil distribution that makes magnetic
field similar to the required magnetic field for gradient coil design.
RESULTS: A coil designed with actively shielded was simulated and compared with the designed gradient coils using mirror
image theory and piece pole effect. According to the numerical evaluation of the x and z coils, the operating currents in the
cases were reduced to 34.4% using magnetostatic mirror-image method to replay the active shielding. Moreover, there was a
significant improvement on the shielding effect when added to resistive eddy current plate.
CONCLUSIONS: Using the magnetostatic mirror image theory and mirror-image model, the current density function that could
not only gives the minimum power dissipation and magnetic energy with the presence of the eddy plate and pole piece effect, but
also provides excellent coil performance compared with active shielding solution.

Keywords: MRI, coil design, eddy plate, mirror image

1. Introduction

For modern medical application, superconducting magnetic resonance imaging (MRI) system has been
a powerful medicine device, especially in noninvasive imaging modality aspect compared with computed
tomography (CT) and x-ray technology [1]. Gradient coils, as a vital component of an MRI system, are
usually designed to provide a linear and orthogonal gradient field along the three axes to spatially encode
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the information of tissue [2,3]. Gradient coil that using passive shield technology cannot prevent eddy
currents on the surrounding conductors when the current switching quickly, which may lead to serious
image distortion [4,5], energy loss [6], mechanical vibration [7], and eddy artifact [8]. Comparatively,
active masking technology has a better image and lower noise caused by eddy currents than passive
shielded coils, which is widely used in the MRI systems.

However, high installation and operating cost have limited applications for many circumstances. In
practice, primary and shielding coils cannot insert into the magnet pole simultaneously owing to deficient
workspace for the planar permanent MRI systems [9]. In order to reduce the eddy current and improve
magnetic field quality to get a better image result, more and more coil design methods were discussed in
MRI systems. Generally, there are two different kinds of design philosophy. Pre-emphasis is frequently
used method, e.g., gradient waveform alternation by providing extra current to compensate for the second
magnetic field affected by eddy currents. Alternatively, different types of shielding method also can
be used for preventing eddy currents. For the actively shielded method, the current direction reverses
in the primary coil and shielding coil layers so that so that the magnetic flux beyond the gradient coil
can be offset largely [10]. Passively shielded method is often implemented outside of the gradient coils
by applying a certain thickness metallic cylinder or plate [11]. In order to reduce the eddy current and
improve magnetic field quality, high permeability materials is used to insert between the magnet and
coil layers to enhance the low-frequency shielding performance. However, the hysteresis characteristics
is difficult to eliminate so that magnetic field propagates through the multi-cylinder cryostat vessel in
the low frequency. For example, Moon proposed a minimum inductance coil design method around the
gradient coil [12]. Zu et al. presented analytical expressions for the magnetic field by multilayer dielectric
plane and line current model [13].

In this paper, at theoretical gradient coil design approach using mirror-image theory was proposed for
planar permanent MRI system. The proposed gradient coils considered the mirror-current around the
magnet pole and resist-eddy current plate, which offered sufficient magnet space for patient and MRI
system components, such as cooling devices. In the gradient coil design procedure, the power dissipation,
stored energy, and field linearity were optimized to achieve the designed gradient fields. For a better
comparison, a set of counterpart coil with same dimension and parameter using actively shielded method
were simulated.

2. Method

In this section, a mirror image concept was adopted to design the planar gradient coil [14]. A resistive
eddy current plate model was incorporated to replace the shielding coils and cause a limitation on eddy
currents in the permanent magnet MRI device. The gradient coil optimization was achieved using a stream
function-combined finite difference method.

2.1. Planar coil geometry and property

As shown in Fig. 1, only 50 mm space (in the z-direction) is available for installing the gradient coils
in the planar MRI system. In practice, six active shielded coil layers (x, y and z) is impossible to place
the limited space. In this paper, a whole resist-eddy current (thickness: d) is adopted to replace set of
shielded gradient coils, offering a magnetic gradient field and a beter-shielding effect. Figure 1 presents
the principle scheme coil layer dimensions. The three “plates” are x-axes coil, y-axes coil and z-axes coil
respectively. In Fig. 1, the MRI system includes two magnet poles sited in top and bottom, a presents the
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Fig. 1. The planar MRI configurations showing limited space is available for the gradient assembly.

distance between the coil layer (z = za) and resist-eddy current plate. The x-gradient coils are placed on
two circular plane (z = ± za). The DSV provides a spherical region with radius 200 mm to calculate
target field strength (24 mT/s). The gap between the upper and lower magnet pole plate is 600 mm.

2.2. Mirror-image theory combined finite-difference method

In a vacuum space, the magnetic field generated by a current source could be calculated following
Biot-Savart law. However, the effects of the magnetization current should be considered if there is a
ferromagnetic medium nearby [15]. A whole resist-eddy current plate (thickness: d) can be divided into
three regions, two boundaries are produced in the process, namely interface 1 and interface 2 (see the
Fig. 2). As illustrated in Fig. 2, magnetic medium (relative permeability µ1) occupy the upper half-space
of the reference plane, while lower space of the reference plane (interface 2) is filled with another
magnetic materials (relative permeability µ3), see the Fig. 2a. The coil plane carrying the current goes
parallel to the interface, and create a gap about a distance of a. As described mirror-image theory, the
magnetic field is produced by the original line current I and mirror current I ′ in the upper half-space, in
which I ′ = kI , k denotes the reflection coefficients.

In this work, a pair of resist eddy current plate was added to prevent the eddy current in the magnet
pole. The coil layers located at z = ± za, are parallel to the surface of magnetic materials layers (see
the Fig. 1) with permeability µ2. Taken the below coil plane (z = −za) for granted, the distance the coil
layer and interface 1 was a (as shown in Fig. 2). The locations of the mirror image (dot line) in the region
1 were shown in Fig. 2b, and those of the region 3 were given in Fig. 2c. This study assumed that the
reflection coefficients could be adjusted by the relative permeability [13]:

k1 =
µ1 − µ2
µ1 + µ2 (1)

k2 =
µ3 − µ2
µ3 + µ2

Based on the mirror-image theory and Ampere loop theorem under medium/boundary condition, the
locations and amplitudes of the mirror current were calculated as follows [13]:

z10 = d
2 − a

I10 = −k1I
z1n = d

2 − a− 2nd

I1n = (k1k2)
n (1−k1)(1+k1)

k1
I

(2)
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Fig. 2. Three-layer region for the resist-eddy current plate (below coil plane z = −za) and positions of mirror-image current
considering the second order mirror image for coil plane (z = −za). (a) Three-medium model; (b)mirror currents at different
reflection coefficients in region 1; (c)mirror currents at different reflection coefficients in region 3. Dot lines represent the
mirror-image of the coil layer.{

z2n = −3d
2 + a+ 2nd

I2n = (k1k2)
n (1−k2)(1+k1)

k1k2

(3)

where k1 and k2 denote reflection coefficients; d is the thickness of the resistive eddy current plate; a
is the distance between the interface 1 and the coil plane. Since the distance between upper coil plane
and lower coil plane is 2za, the transformed mirror current coordinates position z′1n, z′10 (for the upper
resist eddy current plate) for the coil plane (z = −za) can be obtained as well. The proposed coil plane is
placed on the planes at z = ± za , and mirror current is located on the planes at z = z1n. The current
density is defined as [12]:

~J = (Jzar
⇀
er + Jzaθ

⇀
eθ)δ(z − za) + (J−zar

⇀
er + J−zar

⇀
eθ)δ(z + za)

+(Jz10r ~er + Jz10r
⇀
eθ)δ(z − z10) + (J−z10r ~er + J−z10r

⇀
eθ)δ(z + z10)

+

∞∑
n

(Jz1nr ~er + Jz1nr
⇀
eθ)δ(z − z1n) +

∞∑
n

(J−z1nr ~er + J−z1nr
⇀
eθ)δ(z + z1n)

(4)
+(Jz

′
10
r ~er + Jz

′
10
r

⇀
eθ)δ(z − z′10) + (Jz

′
10
r ~er + Jz

′
10
r

⇀
eθ)δ(z + z′10)

+

∞∑
n

(Jz
′
1n
r ~er + Jz

′
1n
r

⇀
eθ)δ(z − z′1n) +

∞∑
n

(Jz
′
1n
r ~er + Jz

′
1n
r

⇀
eθ)δ(z + z′1n)

where the superscripts ± za denote the coil plane at z = ± za; ± z10, ± z1n, ± z′10 and ± z′1n are the
positions of the mirror-image current density, which can be calculated by the Eqs (1–3).
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Fig. 3. Biplanar coil surface’s discretization using FED mesh. (a) radial and circumferential components of current density, (b)
the planar gradient coil mesh.

A finite difference method (FDM) was employed to improve the gradient coil design [16,17]. In
the continuity equation of current density, ~J can be expressed as ~J = Jr~er + Jθ~eθ for the planar coil
design [18]. By defining the potential function ψ, and it has following relation to the current density [19]:

Jr =
∂ψ

r∂θ (5)
Jθ =−∂ψ

∂r

In the Fig. 3, the biplanar gradient coils discretization have been divided two directions, radial and
circumferential directions respectively (see the Fig. 3a). For the biplanar coil surface the current density
components can be approximated as follows:

Jr =
∂ψ

r∂θ
≈ 1

2

(ψA + ψB − ψC − ψD)

r ·∆θ (6)
Jθ =−∂ψ

∂r
≈ 1

2

(ψB + ψC − ψA − ψD)

∆r

According to the Biot-Savart law, the z-component of magnetic field in DSV region is defined as [20]:

Bz(x, y, z) =
µ0
4π

∫
V

(Jrs− Jθq)rdrdθdz
(s2 + q2 + (z − z′)2)1.5

(7)

where µ0 denotes the magnetic permeability of free space; Jr and Jθ are current density components,
respectively; s and q are the intermediate terms expressed in the following equations, respectively:

s=−x sin θ + y cos θ (8)

q = x cos θ + y sin θ − r (9)

Assuming that the contour level that is equally spaced is set as Nc, then we obtain ψ = ψmin+(i−0.5)I ,
in which I = (ψmax − ψmin)/Nc. ψmin, ψmax shows the minimal and maximal stream function on the
coil layer respectively. Once the stream function satisfy the Eq. (5), the stream function contours on the
coil plane could reveal the coil patterns of optimized gradient coil [18].
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2.3. Optimization method of the gradient coil design

To obtain the coil optimization performance , an objective function was proposed related to linearity
of magnetic field, power dissipation and magnetic energy in this part. The stored magnetic energy and
power dissipation can be written respectively as [21,22]:

P =
ρ

h

2π∫
0

ra∫
0

(
(Jr(r, θ))

2 + (Jθ(r, θ))
2
)
rdrdθ (10)

W =
µ0
8π

∫
s′

∫
s

⇀

J(r, θ) · ~J(r′, θ′)
1

|r − r′|
dsds′ (11)

where ρ and h denote the resistivity and thickness of gradient coil material, respectively; the subscript r
and θ of J are the radial and circumferential components of the surface current density, respectively; s is
the current density distribution area. The object function can be constructed as [23]:

f =

N∑
j=1

(Bdsv
z,j −Bdesired

z,j )2 + λ1P + λ2W (12)

where Bdsv
z,j denotes the z-component of the real magnetic field on DSV; Bdesired

z,j is the z-component of
the desired magnetic field at target field source, which is set to the 24 mT/s. P and W are power loss
and magnetic energy of the gradient coil, respectively; λ1 and λ2 are the magnetic energy and power
dissipation weighting factors, respectively. In the finite difference modelling procedure, stream function at
the boundary element nodes can be describe as vector format x, meanwhile, the Eq. (12) can be rewritten
as a matrix-operation:

f = (Ax−Bdesired
z )T (Ax−Bdesired

z ) + λ1
1

2
xT px+ λ2

1

2
xTwx (13)

where Ais the matrix format refer to the current density source and target field region; p and w are
the inductance and magnetic energy matrices calculated by Eqs (10)–(11), respectively. Moreover, the
magnetic fields can be controlled as:

max(|Bdsv
z,j −Bdesired

z,j |)
max(Bt

z)
6 ε

(14)
max(Bshiled

z ) < Bconstraint
z

where ε denotes the maximum magnetic field error in the DSV and Bconstraint
z is the maximum stray field

on the shielding region. The function fmincon was used to solve the magnetic field optimization problem
in Matlab Toolbox. In the simulation design procedure, the dimensions, properties of the gradient coil
and resist-eddy current plates for different cases are depicted in Table 1. The inductance and resistance of
the gradient coil were re-calculated using FastHenry software for performance evaluation [24].

3. Results and discussion

In all different kinds of MRI, magnetic-field component is required to vary linearly along three
directions in the z axis. Its linearity is a crucial indicator of the gradient coil quality defined as:

Gx =
∂Bz
∂x

,Gy =
∂Bz
∂y

,Gz =
∂Bz
∂z

(15)
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Table 1
Coil geometry and characteristics

Items Parameter Case I-1 Case I-2 Case II-1 Case II-2 Case III Case IV
Resist eddy Radius (m) 0.45 0.45 0.45 0.45
current Thickness (mm) 15 15 15 15
plate Relative permeability 440 1616 440 1616
Gradient Radius (m) 0.43 0.43 0.43 0.43 0.43 0.43 (P )
coil 0.48(S)

Distance between above and below
plane (m)

0.25 0.25 0.25 0.25 0.25 0.25

Wire width (mm) 3 3 3 3 3 3
Wire thickness (mm) 3 3 3 3 3 3

Pole plate Relative permeability 4000 4000
Thickness (mm) 30 30

Target field Field strength (mT/m) 24 24 24 24 24 24
DSV (m) 0.4 0.4 0.4 0.4 0.4 0.4

Table 2
The comparison of the biplanar unshielded/shielded gradient coil and proposed coil using a mirror image of the magnetostatic
method

Properties Case I-1 Case I-2 Case II-1 Case II-2 Case III Case IV
Number of Loops (P/S) 40/NA 40/NA 40/NA 40/NA 44/NA 44/32
Current amplitude (A) 321.25 319 324.24 323.35 341.57 521.48
Maximum field error (%) 5.07 5.08 5.06 5.06 5.15 5.08
Inductance (µH) 188.85 189.1 180.90 180.50 170.43 475.31
Resistance (mΩ) 165.23 165.32 171.17 171.40 153.86 305.07
Efficiency η (µT/m/A) 74.70 75.23 74.01 74.22 70.26 46.02
FoM, η2/L (T2/m2/A2/H) 2.95 × 10−5 2.93 × 10−5 3.03 × 10−5 3.05 × 10−5 1.03 × 10−5 1.24 × 10−5

η2/R (T2/m2/A2/Ω) 3.38 × 10−8 3.42 × 10−8 3.20 × 10−8 3.21 × 10−8 1.62 × 10−8 1.37 × 10−8

Minimum wire spacing
(mm)

4.8 4.8 4.8 4.8 5.2 5.2

where Bz is the desired gradient strength. Therefore, for a linear gradient field in the simulation process,
the gradient strength Gx, Gy, Gz should be uniform along each axis. To illustrate the basic theoretical
approach, in this paper, x-axis gradient and z-axis gradient coil were considered separately. The weighting
and parameters were significant for design target field, in the design simulation, the weighting factor
λ1 and λ2) were 0.5, gradient field is 24 mT/s over DSV (diameter 0.4, 762 target points) srface, the
maximum magnetic field error was 4%, and the maximum stray field intensity on the shielding region
was 5 Gauss.

Figure 4 shows the coil winding patterns with same function contour of x-transverse coil. To demonstrate
the coil configuration clarify, different kinds of coil patterns were plotted, where Fig. 4a and b presents
the coil patterns generated using mirror-image theory with different materials µr = 400 (Case I-1) and
µr = 1616 (Case I-2), and Fig. 4c and d show coil patterns considering the pole-piece effect (as depicted
in Case II-1 and Case II-2). Comparatively, an actively shielded coil design pattern was depicted in in
Fig. 4e and f. Figure 4g presents the 3D geometry for the designed gradient coil. The actively-shielded x
gradient primary (11 × 4 loops) and shielding coils (8 × 4 loops) had a radius of 0.43 m, 0.45 m, with
z-coordinates of ± 0.25 m, ± 0.28 m, respectively. In this paper, the current directions in the primary
and shielding coils were opposite in achieving the aim of the shielding. The proposed x-gradient coil
performance using mirror-image theory design method and conventional unshielded/shielded coil are
depicted in Table 2. During the coil designing stage, the figures of merit (FoM) η2/L, and η2/R were used
to assess the coil performance; the minimum wire spacing of both coils were strictly controlled for the
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Fig. 4. Designed passively shielded and actively shielded x-axis coil winding: (a) and (b) are the plane views of different coils
(µr = 400,1616) without considering pole piece effect, respectively; (c) and (d) are the plane views of different coils (µr =
400,1616) considering pole piece effect, respectively; (e) and (f) are the primary, shielding layers for x coil, respectively; (g) is
the 3D coil winding of the actively shielded coil. The arrows indicates the currents direction.

real engineering fabrication. The inductance and resistance of using mirror current theory designed coil
have less than active shielding coil, the obvious drawback for active shielding coil is that it has higher
operating currents and lower efficiency.

The magnetic field error and linearity produced by the different cases (as depicted in Table 2) are
listed in Fig. 5. The magnetic field distribution of both the shielded and unshielded coils in DSV region
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Fig. 5. Magnetic field distribution for the shielded and unshielded x-axis coils: (a) and (b) are the passively shielded coils (µr =
400) considering pole piece effect on the different plane (y = 0, z = 0); (c) and (d) are the passively shielded coils (µr = 1616)
considering pole effect on the different cutting plane (y = 0, z = 0); (e) and (f ) are the unshielded coils on the different plane
(y = 0, z = 0); (g) and (h) are the actively shielded coils on the different plane (y = 0, z = 0).
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Fig. 6. A comparison of the magnetic field : (a) and (b) are the magnetic field for proposed coils (µr = 400,1616) without
considering pole piece effect, respectively; (c) and (d) are the magnetic field for proposed coils (µr = 400,1616) considering
pole piece effect, respectively; (e) and (f) are the magnetic field for unshielded coils with/without pole piece effect, respectively;
(g) is the magnetic field for actively shielded coils.

present a similar linear variation for the x axis because the same target field and dimensions constraints
(magnetic field error: < 4%, depicted in red line, calculated by Eq. (2)). Figure 5a and b are the magnetic
field distributions for passively shielded coils (µr = 40) considering pole piece effect on the different
plane (y = 0, z = 0) over the DSV, respectively; Fig. 5c and d are the mangetic field distributions for the
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Fig. 7. A comparison of z-coil winding: (a) is the plane view of designed coils with permeability µr = 440; (b) is coils with
permeability µr = 1616; (c) is upper plane view for unshielded coil; (d) is the 3D coil winding patterns.

passively shielded coils (µr = 1616) considering pole effect on the different plane (y = 0, z = 0) over
the DSV, respectively; moreover the magnetic field distributions of the actively shielded gradient coil
were illustrated in Fig. 5g and h. By comparing Fig. 5a–d and e–f, the magnetic field distribution appears
to have similar pattern owing to the same design parameters.

The magnetic field distributions for the shielding plate are illustrated in Fig. 6, however, the stray field
distributions are quite different. For comparison, the magnetic field distributions on the sampling plane
of unshielded and actively shielded coils are plotted, as depicted in Fig. 6e–g. The leaking magnetic
field distributions of the coil patterns (µr = 400, 1616) considering the pole piece effect (Fig. 6c and
d) are lower than that of unshielded coil patterns (Fig. 6f) owing to the resist-eddy current plate exists.
Though the active x gradient coil had the same shielding effects as those of the proposed coil using
image current theory (as shown in Fig. 6g), the operating currents, resistance and inductance were much
higher than those of the proposed coils. The apparent advantage of the proposed coil in that it exhibits
excellent magnetic field performance, e.g., the figure of merit. Moreover, the coil designed using higher
permeability of the resist eddy plate (Fig. 6b and d) produced much lower stray field than that generated
by coils designed with lower permeability (Fig. 6a and c).

Figure 7 displays the proposed coils for the different cases and unshielded z-gradient coil patterns.
The unshielded coil plane (radius 0.43 m) was located on z = ± 0.25 m, others design parameters
were consistent with those of the x coils. Figure 7a and b show different design parameters coil winding
patterns. The 3D coil winding patterns was plot in Fig. 7d, moreover, the upper plane view is illustrated in
Fig. 7c. The magnetic field distribution for the proposed coil using the mirror-image theory is illustrated
in Fig. 8. In Fig. 8a and c, the magnetic fields also present linear variation along the z-axis, in which
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Fig. 8. Magnetic field distribution for the proposed z-coils using image current theory and unshielded z-coils; (a), (c) and (e) are
the magnetic field distributions for the designed coils, µr = 440 (without considering pole piece effect), designed coils, µr =
440 (considering pole piece effect), unshielded coil, respectively; (b), (d) and (f) are the stray field related to (a), (c) and (e) on
the sampling point, respectively.

magnetic gradient field error are less than 4% in all cases. The stray fields demonstrate the concentric
circles format, as depicted in Fig. 8b and d. Owing to the stray field control parameters was strictly
constrained in passively shielded coil by using mirror image theory, the magnetic leakage intensity is
obviously lower than that of the unshielded magnetic leakage intensity. Comparatively, in the same
simulation procedure and control parameters, the magnetic field distributions of using mirror current
theory proposed coil considering pole effects have good shielding performance than that of proposed
coil without considering pole effects and unshielded coil (as depieced in Fig. 8). The inductance and
resistance designed by using mirror-image theory considering pole effects (µ = 440) in the z coil were
329.96 mΩ, 541.96 µH, respectively, which is less than that of unshielded coil (353.47 mΩ, 566.73 µH).
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4. Conclusion

In this paper, a novel planar gradient coil design theoretical framework was proposed, which is beneficial
to the development of permanent MRI device systems. The designed coil set can be used for planar
MRI system by using resist-eddy current plate to eliminate the eddy currents, and combined the finite
difference with mirror-image theory into the gradient coils design process, without using the actively
shielded that usually requiring high currents. According to the results of the numerical calculation, for
the x-gradient coil, the operating currents in the cases were reduced by 34.4% by replacing the active
shielding using mirror-image theory, while a performance metric for the properties was maintained in this
study. The performance of the coil will be re-verified evaluation in vivo experiments.
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