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Abstract.

BACKGROUND: Alternative splicing is a mechanism to produce different proteins with diverse functions from one gene. Many
splicing factors play an important role in cancer progression. PRPFS is a core protein component of the spliceosome complex,
U4/U6-US tri-snRNP.

OBJECTIVE: However, PRPFS involved in mRNA alternative splicing are rarely included in the prognosis.

METHODS: We found that PRPF8 was expressed in all examined cancer types. Further analyses found that PRPF8 expression
was significantly different between the breast cancer and paracancerous tissues.

RESULTS: Survival analyses showed that PRPF8-high patients had a poor prognosis, and the expression of PRPF$ is associated
with distant metastasis-free survival (DMFS) and post progression survival (PPS). Gene Set Enrichment Analysis (GSEA) has
revealed that PRPFS8 expression is correlated with TGF-3, JAK-STAT, and cell cycle control pathways. Consistent with these
results, upon PRPF8 silencing, the growth of MCF-7 cells was reduced, the ability of cell clone formation was weakened, and
p21 expression was increased.

CONCLUSIONS: These results have revealed that PRPFS$ is a significant factor for splicing in breast cancer progression.
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1. Introduction

Breast cancer is a common cancer, which has a higher morbidity rate in women [1]. The clinical
outcomes of breast cancer are closely linked to prognostic parameters, such as tumor size, grade, and
Ilymph node and metastasis status. However, genes involved in mRNA alternative splicing are rarely
included in the prognosis. By generating multiple mRNAs from a precursor mRNA (pre-mRNA),
alternative splicing greatly diversify the genome coding capacity. Most genes are multiple-exon genes
and generate more than one functional protein.

Recent studies have confirmed multiple splicing factors affect the splicing of critical breast cancer-
related genes [2]. PRPF8 is a core protein component of the spliceosome complex, U4/U6-US5 tri-snRNP
and contains several WD repeats, which function in protein-protein interactions. It participates in the
two sequential transesterification steps of pre-mRNAs during the cut and link of pre-mRNAs. Loss of
PRPF8 can lead to the death of mouse embryonic cells [3] and Drosophila cells [4]. Thus, the study
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Table 1
The shRNA sequences

Oligo Sequence

PRPF8-1 TCACGTAACACATACAGGG
PRPF8-4 ACAACACAAGCACAGACAG
Control TTACTCTCGCCCAAGCGAG

aimed to investigate the significance of PRPF8 in breast cancer. Our present study, the data of Oncomine
and TCGA (The Cancer Genome Atlas) were used to analyze the expression levels of PRPFS8 in normal
tissue and carcinomas. The clinical significance of PRPFS in breast cancer was further explored. GSEA
analysis and in vitro experiments have disclosed the possible role of PRPFS in breast cancer.

2. Materials and methods
2.1. Bioinformatic and statistical analysis

The expression of PRPFS& in different cancer types, between cancer samples and adjacent tissues,
is analyzed from GEO and Oncomine database (https://www.oncomine.org/). P values less than 1 x
10~% were considered statistically significant. UALCAN (http://ualcan.path.uab.edu/index.html) dataset
was used to analyze the PRPFS protein levels in breast cancer tissue. Km-plot (https://kmplot.com) and
TCGA portal (http://www.tumorsurvival.org/index.html) websites were used to analyze the expression
of PRPFS in breast cancer survival. The GSEA (http://www.broadinstitute.org/gsea/index.jsp) analyze
the expression level of PRPFS8 was used as the phenotype label, and “Metric for ranking genes” was set
to Pearson Correlation. The downstream pathways (positive and negative) of PRPF8§ are obtained by
calculating the enrichment score of data in the breast cancer group (n = 1106). The enrichment score, and
multiple test corrections reveal the biological characteristics and genetic regulatory network of PRPFS.

2.2. Cell culture

MCF-7 and HEK-293T cells were obtained from the National Infrastructure of Cell Line Resource.
MCEF-7 cells were cultured in «-MEM medium containing 10% fetal bovine serum (FBS) and 10 pg/ml
insulin. HEK-293T cells were cultured in DMEM medium containing 10% FBS. All the cells were
cultured at 37°C.

2.3. RNA purification and quantitative reverse transcription-polymerase chain reaction

Viral packaging vectors of pMD2 (Addgene, USA) and pPAX2 (Addgene, USA) and pGIPZ (Addgene,
USA) were transfected into 293T cells with Lipofectamine 2000. The shRNA sequences were listed
(Table 1), for pGIPZ. After 3 days, the medium was purified with 0.45 pm filters and mixed with 1/3
volumes of lentiviral concentration solution. After the mixture solution was incubated at 4°C for 12 h, it
was centrifuged at 4°C for 45 min, and pellets were resuspended in PBS. 100 1 viruses were added to
2 x 10° MCF-7 cells, and the harvested cells were used to extract total RNA. Reverse transcription of
RNA with PrimeScript RT kit (Takara, Japan). Quantitative PCR (q-PCR) Detection System using iTaq
Universal SYBR Green Supermix. Primers for g-PCR were listed (Table 2). Data were analyzed using the
2AACt method.
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Table 2
Primers used for quantitative PCR
Primer Sequence
PRPF8-gF TGTCAGTTGCGTGTCTTCAT
PRPF8-qR  AGACAGTAAAACTCCCATCA
P21-qF TGTCTTGTACCCTTGTGCCT
P21-qR AAGATGTAGAGCGGGCCTTT
(A) MRNA expression (Affy): PRPFS
12. - Bl ‘tevkemia_other(S)
i El B-cem_airi(i3)
- = El T-celi_ALLL16)
. N - - El 3-cen_tymphoma_other(1s)
11.5 é é é [5 —! . | l I - = 1 i:v:wr:hl[v:-::DLac-ua)
: an s
o ] HH n cML(1S) it
IT i Béﬂﬁﬂ”ﬂ"ﬂ é $H i =
L T C; r'-chnr-w;w—(?l:‘
10 Bl AmML(39)
El other(s)
s - - El ‘ymphoma_Burkott(11)
- - El gtioma (65)
s o - HEl endometrium(28
= b= i ung_small_celi(S4)
= tel(8)
- - Cl sarcoma(12)
.  stomach{29)
(B) Protein expression of PRPF8 in Breast cancer
| |
& ©) "
g 5
o < 61 . .
g 0+ n + . i
- 5 S =
7 o X =
" i Lﬁ I.nc d § }
S —— oy | T TER
H | ®00s0® LTI
! & g 4- eoe - M
-3 — x = o " Ahaatl
o oo i e
4 s Al
e .-y 3 : . . .
CPTAC samples Basal Her2 LumA LumB
(n=170) (n=78) (n=499) (n=197)

Fig. 1. (A) The mRNA expression of PRPFS in different cancer cell lines. (B) The protein levels of PRPFS are higher in breast
cancer than in adjacent normal tissue. (C) PRPF8§ expression in the subtypes of breast cancer.

2.4. Colony formation and cell proliferation

500 MCF-7 cells per well were grown in six-well plates and maintained at 37°C for 12 days. The
medium was replaced every 3 days. After 12 days, the cells were stained with crystal violet for 20 minutes
as described in the product manual. The colonies were counted and subject to statistical analyses. In the
cell proliferation analysis, the same cells were seeded in 96-well plates and the CCK-8 kits were used
to detect cell viability on day 1, 3, 5. Data were normalized to day 1 and presented as mean =+ standard
deviation.
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Fig. 2. (A) PRPFS8 protein levels are associated with the OS of breast cancer patients in Kaplan-Meier plots. (B) The mRNA
expression of PRPFS8 is associated with the DMFS probabilities of breast patients. (C) The mRNA expression of PRPFS is
associated with the PPS probabilities of breast patients. (D) Prognostic analysis of PRPFS with mRNA expression in luminal A
patients.

3. Results
3.1. Characterizing the expression of PRPFS in breast cancer

There are few reports on the expression of PRPFS in breast cancer. In this study we analyzed the
expression levels of PRPFS in various human tumors from the Oncomine database and Cancer Cell Line
Encyclopedia (CCLE) (fold change of > 4, gene rank of > 10%, and p value < 1 x 10~ was set as
the threshold). PRPFS is expressed in all subtypes of cancers (Fig. 1A). Then we compared PRPFS8
expression between normal samples (n = 18) and primary breast tumor samples (n = 125) in UALCAN
database (http://ualcan.path.uab.edu/index.html), and has found PRPF'§ protein expression is significantly
higher in primary tumors (Fig. 1B). (PRPF$& proteomic expression profile based on sample types, and
Z-values represent standard deviations from the median across samples. p value = 4.3E714).
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Fig. 3. (A) WB shown the inhibition of PRPFS shRNA in MCF-7 cells. (B) MCF-7 cells growth curves by transduced with
PRPF8 different shRNAs. (C) The images of MCF-7 colony formation, which were transduced with different shRNAs. (D) The
numbers of colonies after MCF-7 cells were transduced with different shRNAs.

3.2. PRPFS expression is associated with the survival of breast cancer patients

Subsequently, we investigated the association of PRPF8 expression with breast cancer patient survival.
In breast cancer, the PRPF8 protein level was associated with the overall survival (OS) according to
Kaplan-Meier plots database. Consistent with this result, PRPFS8 mRNA expression is also associated
with the OS in the Kaplan-Meier plots cohort. In the cohort of (GSE7390), we also found that PRPFS
expression was associated with the PPS (p < 0.05, HR = 1.68), and DMFS (p < 0.05, HR = 1.8)
(Fig. 2). To further characterize the role of PRPF$ in breast cancer, we analyzed the association of PRPFS§
expression with the patient OS in different subtypes of breast cancer using the TCGA dataset. The results
have shown that PRPF$8 expression is significantly associated with the OS in Luminal A patients, but
not in other subtypes of breast cancer, indicating PRPF8 might play a role in Luminal A type cancer
(Fig. 2D).

3.3. Inhibition of PRPFS8 expression impaired breast cancer cell proliferation

To confirm the function of the PRPFS§ in breast cancer, we employed shRNAs to silence PRPFS
expression in breast cancer cells, MCF-7. Western Blot (WB) shown that both shRNAs suppressed the
expression of PRPFS8 (Fig. 3A). Meanwhile, inhibiting PRPF8 expression, the numbers of colonies
decreased (Fig. 3C and D), and the growth curves were significantly inhibited, suggesting that PRPFS§
was essential for the maintenance of the proliferation in cancer cells (Fig. 3B).
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Fig. 4. (A) GSEA results show TGF-g signaling pathway is associated with PRPF8 expression. (B) GSEA results show
JAK-STAT pathway is associated with PRPFS8 expression. (C) GSEA results show pathways in cancer are associated with PRPFS
expression. (D) GSEA results show cell cycle pathway is associated with PRPFS expression. (E) Inhibition of PRPFS§ expression
upregulated p21 mRNA expression.

3.4. PRPFS regulates the expression of p21 in breast cancer

To further explore the functional mechanism of PRPFS in the breast cancer cell, we used GSEA to
analyze the pathways associated with PRPFS8 in breast cancer. The results have shown that PRPFS§
positively regulates 153 pathways and negatively regulated 31 pathways. The high expression of PRPFS8
was correlated with JAK-STAT signaling pathway (ES = 0.557898, p = 0, FDR = 0.001182), TGF-g
signaling pathway (ES = 0.588807, p = 0, FDR = 0.001201), pathway in cancer (ES = 0.551778,
p = 0, FDR = 4.19E-04), and cell cycle pathway (ES = 0.625877, p = 0, FDR = 0). As cell cycle
pathway is a key pathway that regulates cell growth, we selected p21, a critical component of the cell
cycle pathway, to verify the GSEA results. After PRPF8 shRNAs were transduced into MCF-7 cells, the
mRNA expression of p21 was detected with quantitative PCR (q-PCR). The result shown that inhibition
of PRPF8§ expression up-regulated the expression of p21 in MCF-7cells (Fig. 4E). Therefore, PRPF8
inhibition increased p21 expression in MCF-7 cells to inhibit the cell proliferation.

4. Discussion

In this study, we investigate the role of PRPFS in breast cancer. PRPF8 mRNA expression is signif-
icantly elevated in breast cancer samples compared with the paracancerous tissue. PRPFS8 mRNA is
differentially expressed among different breast cancer molecular subtypes, and its levels were inversely
correlated with the OS in breast cancer patients. Furthermore, we confirmed the role of PRPFS in breast
cancer with in vitro experiments, which have shown that silencing PRPF8 in breast cancer cells repressed
cell proliferation by upregulating p21 expression.

Alternative splicing is one of the mechanisms to increase protein diversity [5-9]. Recently, with the
better understanding of alternative splicing process [10—15], it has been found that abnormal expression
of splicing factors is closely related to many diseases. Many splicing factors play an important role in
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cancer [16-23], including in breast cancer [24—-26]. PRPFS is the core component of the ribonucleoprotein
(RNP) complexes in the spliceosome and participates in splice-site recognition, branch-point formation
and catalysis process [27-29]. Whether PRPF8 plays a role in breast cancer is not known.

In this study, we demonstrate that PRPF8 is critical for breast cancer cell survival. Firstly, PRPFS is
elevated in breast tumors compared with the normal tissue (Fig. 1B). Second, PRPF8 was related to OS,
PPS, and DMFS in breast cancer patients (Fig. 2A, B&C). More importantly, silencing of PRPFS§ slowed
down breast cancer cell growth and reduced the colony formation of MCF-7 cells (Fig. 3). Therefore, we
found PRPF8 plays an important role in breast cancer.

p21 is a cyclin-dependent kinase inhibitor [30-34], It binds to cyclin-dependent kinase 2 complexes
and inhibits their activity [35,36]. Previous research has shown that co-expression of p21 and p27 proteins
in MCF-7 cells induced cell apoptosis and inhibited cell proliferation [37]. Another study has shown that
tumor growth was significantly reduced by transferring p21 into breast cancer mouse model cell lines
by inhibiting cell proliferation [38]. Our results indicated that PRPFS8 expression was associated with
many pathways, such as TGF-S pathway, JAK-STAT pathway, cell cycle control pathway. Recent studies
have proved that multiple pathways are related to p21, including cell cycle, TGF-3, and JAK-STAT
pathways [39—44]. Our study demonstrated that silencing PRPFS8 up-regulated the expression of p21 and
inhibited cancer cell survival.

5. Conclusion

Our study provides evidence that splicing factor PRPFS8 is critical for breast cancer cell survival and
has the potential prognostic value in breast cancer. PRPF8 may achieve its functions in breast cancer by
modulating p21 expression.
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