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Abstract.
BACKGROUND: In endoscopic photoacoustic tomography (EPAT), the photoacoustically induced ultrasonic wave reflects
at tissue boundaries due to the acoustic inhomogeneity of the imaged tissue, resulting in reflection artifacts (RAs) in the
reconstructed images.
OBJECTIVE: To suppress RAs in EPAT image reconstruction for improving the image quality.
METHODS: A method was presented to render the cross-sectional images of the optical absorption with reduced RAs from
acoustic measurements. The ideal photoacoustic signal was recovered from acoustic signals collected by the detector through
solving a least square problem. Then, high-quality images of the optical absorption distribution were reconstructed from the
ideal signal.
RESULTS: The results demonstrated the improvement in the quality of the images rendered by this method in comparison
with the conventional back-projection (BP) reconstructions. Compared with the short lag spatial coherence (SLSC) method, the
peak signal-to-noise ratio (PSNR), normalized mean square absolute distance (NMSAD), and structural similarity (SSIM) were
improved by up to 8%, 20%, and 5%, respectively.
CONCLUSIONS: This method was capable of rendering images displaying the complex tissue types with reduced RAs and
lower computational burden in comparison with previously developed methods.

Keywords: Endoscopic photoacoustic tomography (EPAT), image reconstruction, reflection artifact, artifact suppression

1. Introduction

Photoacoustic tomography (PAT) is a rapidly developing functional imaging modality in recent years. It
provides good optical contrast and ultrasonic resolution as well as high imaging depth compared with pure
optical imaging technologies [1]. Endoscopic PAT (EPAT) combines noninvasive PAT with endoscopic
detection, which has a great potential in the early diagnosis of diseased tissues in a tubular object such as
digestive tract and coronary vessels.
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In practical applications, it is usually difficult to achieve the theoretical imaging depth because of
acoustic reflection. When the PA wave propagates in different tissue types in all directions, partial wave
far away from the detector may be reflected by the acoustically dense deep tissue and then propagates
back to the detector which is similar to a virtual acoustic source, resulting in reflection artifacts (RAs) in
the reconstructed images [2]. The RAs usually appear at a deeper depth than actual optical absorbing
structures and they are easily confused with the optical absorbers to be imaged [3]. Further, RAs at a
certain depth are stronger than weak PA signals generated by deep tissues, leading to the reduced imaging
depth [4]. In addition, the strongly reflected clutter arising from the acoustic sources outside the imaging
plane is another contributing factor leading to the limited imaging depth [5].

Early researches on RA reduction focused on clutter decorrelation. For example, Jaeger et al. [5]
designed a deformation compensated averaging (DCA) approach basing on tissue palpation with the
imaging probe. It requires special training for operators to control the probe motion. Moreover, it can only
be employed in the epi-mode of PA imaging for easily deformable tissues such as forearm and neck, but
unsuitable for EPAT. To overcome the shortcomings of DCA, Jaeger et al. [6] developed a single-focus
localized vibration tagging (LOVIT) method without the need for tissue palpation. The localized tissue
displacement was induced by the acoustic radiation force (ARF) generated by a focused ultrasonic beam
at its focus. Different from DCA, LOVIT does not require considerable practice and training for operators.
It can only be employed in the imaging system equipped with an detector which can transmit ARF beam
satisfying the ultrasonic safety rules. Moreover, it takes a long time to scan the entire imaging plane
since it eliminates the clutter at one focal region at a time. Later, to shorten the signal acquisition time,
Petrosyan et al. [7] improved the single-focus LOVIT by creating multiple foci in parallel forming the
comb-shaped ARF patterns.

The clutter decorrelation requires additional devices to acquire pulse-echo images recording tissue
deformation, which prolongs the process of data acquisition. Alles et al. [8] distinguished reflected
clutters and PA signals based on the difference in their spatial coherence expressed by the short-lag spatial
coherence (SLSC). Compared with clutter decorrelation, SLSC needs only a single scan, which shortens
the acquisition process. However, it has difficulties in distinguishing the clutter from the incoherent signal
produced by dense microvascular tissues whose spatial coherence is similar to or lower than that of the
clutter. Moreover, SLSC relies on time measurement of the geometric path associated with beamforming,
so the reduced accuracy is observed in the case of hyperechoic reflection or strong reflection.

Recently, deep learning with convolutional neural networks (CNNs) has been widely used in medical
image processing and analysis. CNN has shown its potential in recognition and removal of RAs in PA
imaging [9]. The main concern is that public data sets for PAT has not been available, and the clinical case
data are seriously insufficient. The data sets used in current studies are usually constructed by computer
simulation. The validity of CNNs trained by such simulation data may not be guaranteed in in vivo
imaging of human tissues.

This paper presents a simple method to suppress in-plane RAs in EPAT. The method recovers the
approximation of ideal PA signals from acoustic measurements and numerically generated planar ul-
trasound. It does not require additional devices to record tissue deformation, and it is computationally
efficient in comparison with CNN which requires a large amount of image data for training.

2. Method

As shown in Fig. 1, an imaging catheter is inserted into the object cavity. The detector at the catheter
tip circumferentially scans surrounding tissues and collects time-dependent series of acoustic pressure
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Fig. 1. Schematic diagram of acquiring PA signal from inside a tubular object. Left: axial view. Right: transverse view.

photoacoustically generated by optical absorbing structures. The imaging plane is perpendicular to the
catheter, and the detector is located in the image center. A XOY rectangular coordinate system and a θ-l
polar coordinate system are established on the imaging plane with the detector as the origin.

The probe emits short laser pulses (∼ ns) radially to illuminate the surrounding tissues. Ignoring the
wave aspect of light, the laser induced irradiation in the multilayered wall is regarded as the interaction
between a large number of photons and tissues. We model light transportation in tissues with Monte Carlo
(MC) simulation to obtain the numerical solution of the spatially distributed absorbed optical energy
density (AOED) [10].

The photoacoustic pressure propagating in acoustically heterogeneous lossy medium satisfies the
following wave equation considering both absorption and dispersion [11],

∇2p(r, t)− 1

[c(r)]2
∂2

∂t2
p(r, t) + τ(r)(−∇2)

a

2 p(r, t) + η(r)(−∇2)
a+1

2 p(r, t)
(1)

=− βe
CP

A(r)I ′(t),

where r ∈ Ω and Ω ∈ R2 is the imaging plane, ∇ is Hamiltonian operator, p(r, t) is the pressure at r
and time t, c(r) is the speed of sound (SoS), A(r) is the AOED, βe is the isobaric volume expansion
coefficient, CP is the specific heat, a is the power law exponent typically in the range of 1 6 a 6 1.5 for
biological tissues [11] (here it is set as 1.5), I(t) is the time-domain function describing the instantaneous
irradiation pulse, which can be further expressed as I(t) = δ(t) for impulse heating, and I ′(t) is the first
derivative of I(t) versus time. τ(r) and η(r) denote the acoustic absorption and dispersion proportionality
coefficients, respectively [11],{

τ(r) = −2µ[c(r)]a−1

η(r) = 2µ[c(r)]a tan(πa/2)
, (2)

where µ ≈ (10−7/2π) cm−1rad−1s is the absorption coefficient [12].
Assume that the PA wave is reflected only once during propagation. Based on the Born approximation,

the pressure reaching the detector is determined by [13,14]

ppa(r, t) = −s2
t [γκ(r)p(r, t)] ∗ g(r) + [γρ(r)∇p(r, t)] ∗ ∇g(r), (3)

where

γκ(r) = κ(r)/κ0(r)− 1, (4)

γρ(r) = 1− ρ0(r)/ρ(r), (5)

and

g(r) = −(j/4)H
(2)
0 (st|r|). (6)

Here, ppa(r, t) is the pressure reaching the detector, γρ(r) and γκ(r) are the acoustic heterogeneity
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parameters regarding the density and compressibility, g(r) is the Green’s function, ρ0(r) and κ0(r)
are the ambient density and compressibility, ρ(r) and κ(r) are the density and compressibility of the
inhomogeneous medium, st is the wave number, ‘*’ denotes convolution, j is the imaginary unit, H(2)

0 (·)
is the Bessel function of the third kind, and |r| is the distance between the position r and the detector.

The planar ultrasonic wave is numerically generated as follow,

pus(r, kt, σ) = (k2
t

/
2
√
k2
t − k2

x)

∫
Ω

[γκ(r) + eσ · eϕ · γρ(r)] exp[−kt|eσ + eϕ| · r]dr, (7)

where

eσ = (cosσ, sinσ)T (8)

and

eϕ = (kx/kt,
√

1− (kx/kt)2)T. (9)

Here, σ ∈ [0, 360◦) is the incident angle of a single planar ultrasonic wave relative to the positive
X-axis, kt = ω/c0 is the wave number, ω is the angular frequency, c0 is the ambient SoS, pus(r, kt, σ) is
the pressure at r with the incident angle σ and wave number kt, and kx is the spatial wave number along
the positive X-axis with |kx| < kt.

prc(r, kt) = (−ε/2π)

∫ kt

−kt
pus(r, kt, σ)ph(−kx,σ,−kt)dkx,σ, (10)

where prc(r, kt) is the pressure of the reflected clutter at r with the wave number kt, kx,σ = kt cosσ,
ph(−kx,σ,−kt) is the pressure of the ideal PA signal, and ε < 0 is the dimension factor. ε is an empirical
constant being used to balance the amplitude of the PA signal and planar ultrasound. It is independent of
image structures and is needed to be finely tuned according to the results.

The matrix form of Eq. (10) in frequency domain is

Ptnrc = εPus(rn, σ) · Ptnh , (11)

where Pus(rn, σ) is the M ×M diagonal matrix composed of the time-dependent planar ultrasound,

Pus(rn, σ) =


pus(rn, σ, kt1) 0 · · · 0

0 pus(rn, σ, kt2) · · · 0
...

...
. . .

...
0 0 · · · pus(rn, σ, ktM )

 . (12)

Here, M is the length of the time series of the pressure collected by the detector at each measuring
position and pus(rn, σ, ktm) is the pressure of the planar ultrasonic wave with the wave number ktm and
the incident angle σ at rn. Ptnrc and Ptnh are the nth row vectors in Prc and Ph, respectively. Ph and Prc are
the ideal signal matrix and reflected clutter matrix with the dimension of N ×M , respectively,

Ph =


ph(r1, kt1) ph(r1, kt2) · · · ph(r1, ktM )
ph(r2, kt1) ph(r2, kt2) · · · ph(r2, ktM )

...
...

. . .
...

ph(rN , kt1) ph(rN , kt2) · · · ph(rN , ktM )

 (13)

Prc =


prc(r1, kt1) prc(r1, kt2) · · · prc(r1, ktM )
prc(r2, kt1) prc(r2, kt2) · · · prc(r2, ktM )

...
...

. . .
...

prc(rN , kt1) prc(rN , kt2) · · · prc(rN , ktM )

 , (14)
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Fig. 2. Geometry of computer-simulated phantoms. From left to right, the phantoms are numbered as I, II, III, and IV.

where N is the number of the measuring locations and ph(rn, ktm) and prc(rn, ktm) denote the pressure
of the ideal signal and reflected clutter with the wave number ktm at rn.

The measured acoustic signal is the superposition of the ideal signal and reflected clutter,

ppa(r, t) = ph(r, t) + prc(r, t), (15)

where ppa(r, t), ph(r, t), and prc(r, t) are the pressure of the measured signal, ideal signal, and reflected
clutter, respectively. In frequency domain, Eq. (15) is rewritten as

Ppa = Ph + Prc, (16)

where Ppa is the N ×M matrix of the measured signal

Ppa =


ppa(r1, kt1) ppa(r1, kt2) · · · ppa(r1, ktM )
ppa(r2, kt1) ppa(r2, kt2) · · · ppa(r2, ktM )

...
...

. . .
...

ppa(rN , kt1) ppa(rN , kt2) · · · ppa(rN , ktM )

 (17)

and ppa(rn, ktm) is the pressure of the measured signal with the wave number ktm at rn. Substitute
Eq. (11) into Eq. (16) obtaining

Ptnpa = Ptnh + εPtnh · Pus(rn, σ), (18)

where Ptnpa is the nth row vector in Ppa. Finally, the ideal signal is recovered from Ptnpa and Pus(rn, σ) as
follow,

Ptnh = Ptnpa · [εPus(rn, σ) + I]−1, (19)

where I is the identity matrix.
The AOED is finally recovered from the ideal signal by back projection (BP) [15] as follow,

A(r) = − 4CP
βe[c(r)]3

m∑
i=1

z0

|ri − r|
1

t

∂ph(ri, t)
∂t

∣∣∣∣
t=
|ri− r|
c(r)

, (20)

where z0 is the distance between the position r and the tissue surface.

3. Results

Figure 2 shows the cross-sectional geometry of the computer-simulated coronary vessel and cavity
phantoms. Table 1 lists their parameters by referring to [16]. The SoS and density of each tissue layer
are set as the Gauss distribution with the mean of the values in the table and the variance of 5 and 0.05,
respectively.



S206 Z. Sun and X. Zhang / Suppression of acoustic RA in EPAT images based on approximation of ideal signals

Ta
bl

e
1

O
pt

ic
al

,a
co

us
tic

,a
nd

st
ru

ct
ur

al
pa

ra
m

et
er

s
of

di
ff

er
en

tt
is

su
e

ty
pe

s
in

fo
rw

ar
d

si
m

ul
at

io
n

Ti
ss

ue
na

m
e

Ti
ss

ue
co

m
po

ne
nt

A
ve

ra
ge

re
fr

ac
tiv

e
in

de
x

A
ve

ra
ge

re
fle

ct
iv

ity
O

A
C

(c
m

−
1
)

O
SC

(c
m

−
1
)

A
ni

so
tr

op
y

fa
ct

or

A
ve

ra
ge

So
S

(m
/s

)

A
ve

ra
ge

de
ns

ity
(k

g/
L

)

A
ve

ra
ge

ra
di

al
th

ic
kn

es
s

(m
m

)

V
es

se
lw

al
la

dv
en

tit
ia

C
on

ne
ct

iv
e

tis
su

e
1.

42
0.

08
0.

21
6

0.
85

16
00

1.
02

6
Ph

an
to

m
I:

0.
5

Ph
an

to
m

II
:0

.6
V

es
se

lw
al

li
nt

im
a/

m
ed

ia
M

us
cu

la
rt

is
su

e
1.

42
0.

05
0.

21
6

0.
85

15
80

1.
07

3
Ph

an
to

m
I:

1.
0

Ph
an

to
m

II
:1

.2
Fi

br
ou

s
ca

p
Fi

br
ou

s
tis

su
e

1.
47

0.
24

0.
01

8
25

0.
78

16
10

1.
05

8
0.

3
C

al
ci

fie
d

pl
aq

ue
C

al
ci

um
1.

47
0.

34
0.

62
56

0
0.

78
15

40
1.

66
8

0.
5

L
ip

id
po

ol
L

ip
id

1.
47

0.
42

0.
18

52
0

0.
82

16
50

0.
94

7
Ph

an
to

m
I:

0.
3

Ph
an

to
m

II
:0

.5
lu

m
en

B
lo

od
1.

35
0.

12
0.

75
61

0
0.

99
9

15
60

1.
06

5
Ph

an
to

m
I:

2.
0

Ph
an

to
m

II
:1

.7
C

av
ity

w
al

l
C

on
ne

ct
iv

e/
m

us
cu

la
rt

is
su

e
1.

43
0.

1
0.

21
16

0.
8

16
00

1.
13

6
6

L
es

io
n

1#
E

ff
us

io
n

1.
47

0.
48

0.
12

32
0

0.
85

16
20

1.
08

7
1.

08
L

es
io

n
2#

Tu
m

ou
r

1.
48

0.
44

0.
02

5
55

0.
85

16
30

1.
11

2
1.

05
L

es
io

n
3#

Fa
tty

tis
su

e
1.

47
0.

45
0.

11
51

0
0.

85
14

80
0.

94
7

1.
1

L
es

io
n

4#
Fi

br
ou

s
tis

su
e

1.
47

0.
24

0.
01

3
25

0.
85

15
60

0.
94

5
1.

12
L

es
io

n
5#

Fi
br

o-
fa

tty
tis

su
e

1.
47

0.
46

0.
02

3
35

0.
85

15
80

1.
16

2.
5

C
av

ity
D

ig
es

tiv
e

ju
ic

e
1.

2
0.

32
0.

52
62

0
0.

99
9

15
40

1.
00

5
5



Z. Sun and X. Zhang / Suppression of acoustic RA in EPAT images based on approximation of ideal signals S207

Fig. 3. Images of AOED (top) and initial pressure (bottom) by forward simulation.

Fig. 4. Images of AOED reconstructed by using BP (top) and our method (bottom).

Fig. 5. Evaluation indexes of reconstructed images before and after suppression of RAs.
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Fig. 6. Images of AOED reconstructed by SLSC (top) and CNN (bottom).

Fig. 7. Evaluation indexes of reconstructed images by using our method, SLSC and CNN.

Figure 3 shows the forward simulation results of the AOED and PA signal which contains the additive
Gaussian white noise with the signal-to-noise ratio (SNR) of 30 dB. The exciting wavelength and pulse
duration are 1.7 µm and 20 ns, respectively. In AOED images, different tissue types can be distinguished
from each other due to their specific optical properties. The three-layered structures of the arterial wall
cannot be identified because of their similar optical parameters. In images of the initial pressure, the
tissue boundaries can be identified, but obvious RAs are observed around the lesions.
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Fig. 8. Reconstructed images of AOED. (a) From top to bottom, σ = 0◦, 90◦, 180◦, 270◦, and equals to the measuring angle of
the detector; (b) From top to bottom, ε = -2e-7, -2e-8, -2e-9, -2e-10, and -2e-11, respectively.

Figure 4 presents the images reconstructed by using our method and BP [15]. We utilized k-wave
toolbox in MATLAB to generate the planar ultrasonic wave where ε = -2e-9 and the incident angle σ
is equal to the measuring angle of the detector θ. The blurred boundaries, artifacts, and distortions are
observed around the plaques and lesions in BP reconstructions. In contrast, the quality of the images
obtained with our method is significantly improved and the contrast of different tissue types are enhanced.

We adopted peak signal to noise ratio (PSNR), normalized mean square absolute distance (NMSAD),
and structural similarity (SSIM) [17] as quantitative indices to evaluate the reconstruction quality. From
Fig. 5, we concluded that the quality of the images after RA suppression is improved in comparison
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Fig. 8. Continued.

with that of BP reconstructions. These convincing results demonstrate the effectiveness of our method in
reducing RAs and the improvement in the contrast of different tissue types.

We compared our method with the SLSC approach [8] and a CNN method of our previous work [18].
SLSC is used as a weighting factor of different signals in reconstructing images to suppress clutters
and preserve PA signals as well. As stated in Introduction, the SLSC approach is unable to effectively
distinguish incoherent signals generated by dense tissues from the clutters because of their similar spatial
coherence. Severe artifacts are observed around the cavity wall in Fig. 6. Figure 7 reveals the improvement
in the quantitative indices of our method in comparison with SLSC.

The CNN method constructs and trains a neural network based on a U-net. The network is used to
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Fig. 9. Evaluation indexes of images regarding different (a) σ and (b) ε.

optimize the time-reversal reconstructions. We constructed the data set by computer simulation which
contains 5000 pairs of sample images. We trained and tested the network on a GPU configured with
NVIDIA geforce 1080ti. Figures 6 and 7 reveal that the quality of CNN reconstructions is similar to
that of our method. CNN has the advantages of strong learning ability and good portability. However, its
performance in reconstructing high-quality images depends on the data set used for training. It can only
provide application scenarios with limited amount of data, and it is time-consuming to train the network
with a high requirement for hardware.

4. Discussion

We discussed the influence of the incident angle of the planar ultrasound denoted as σ on the recon-
struction quality based on the results by setting σ at 45◦ intervals within the range of [0◦, 360◦) while
other parameters remained unchanged. The results in Figs 8a and 9a, and Table 2 reveal that the image
quality obtained when σ equals to the measuring angle θ of the detector is better than that of a fixed
incident angle. Then, we set ε as -2e-7, -2e-8, -2e-9, -2e-10, and -2e-11, respectively, by referring to [19]
while σ = θ. The results in Figs 8b and 9b indicate that the best reconstruction quality is achieved when
ε = -2e-9.

5. Conclusion

This work developed a method to suppress RAs in EPAT images with low requirements for equipment
and operators. The results of simulated phantoms demonstrate its validity in improving the image quality.
The best quality is obtained when ε = -2e-9 and the incident angle equals to the measuring angle of
the detector. Compared with BP reconstructions, the PSNR, NMSAD, and SSIM are improved by up
to 18.8%, 27.7%, and 14%, respectively. Compared with SLSC, the indexes are improved by up to 8%,
20%, and 5%.

This study focused on removal of in-plane RAs which are produced by the acoustic scatterers and
optical absorbers inside the imaging plane. As for out-of-plane reflection, a highly focused ultrasonic
transducer is needed to achieve high-quality imaging, where the out-of-plane clutter can be neglected.
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Deep learning has shown great potential in real-time imaging with the development of high-performance
processor, big data technology, and the continuous increase of open source databases. In the future work,
we plan to design a model-based strategy to suppress RAs in EPAT by combining the approximation of
ideal PA signals with CNN training.
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