Technology and Health Care 30 (2022) S173-S190 S173
DOI 10.3233/THC-228017
IOS Press

Deep learning-based breast region extraction
of mammographic images combining
pre-processing methods and semantic
segmentation supported by Deeplab v3+

Kuochen Zhou™*, Wei Li and Dazhe Zhao

School of Computer Science and Engineering, Northeastern University, Shenyang, Liaoning, China

Abstract.

BACKGROUND: Breast cancer has long been one of the major global life-threatening illnesses among women. Surgery and
adjuvant therapy, coupled with early detection, could save many lives. This underscores the importance of mammography, a
cost-effective and accurate method for early detection. Due to the poor contrast, noise and artifacts which results in difficulty for
radiologists to diagnose, Computer-Aided Diagnosis (CAD) systems are hence developed. The extraction of breast region is a
fundamental and crucial preparation step for further development of CAD systems.

OBJECTIVE: The proposed method aims to extract breast region accurately from mammographic images where noise is
suppressed, contrast is enhanced and pectoral muscle region is removed.

METHODS: This paper presents a new deep learning-based breast region extraction method that combines pre-processing
methods containing noise suppression using median filter, contrast enhancement using CLAHE and semantic segmentation using
Deeplab v3+ model.

RESULTS: The method is trained and evaluated on mini-MIAS dataset. It has also been evaluated on INbreast dataset. The
results outperform those generated by other recent researches and are indicative of the capacity of the model to retain its accuracy
and runtime advantage across different databases with different image resolutions.

CONCLUSIONS: The proposed method shows state-of-the-art performance at extracting breast region from mammographic
images. Wide range of evaluation on two commonly used mammography datasets proves the ability and adaptability of the
method.

Keywords: Breast cancer, mammography pre-processing, computer-aided diagnosis, region extraction, semantic segmentation,
deep learning, fine-tuning

1. Introduction

Breast cancer is a globally-significant disease most commonly found in women. The proportion of
breast cancer in relation to other cancers in women has increased to 25.2% in recent years [1]. The exact
causes and progression of breast cancer are unknown, but the annual rise in incidence has resulted in it
now being a leading cause of death among women. In China, the annual incidence of breast cancer is

*Corresponding author: Kuochen Zhou, School of Computer Science and Engineering, Northeastern University, Shenyang,
Liaoning 110819, China. E-mail: 151221401 @qq.com.

0928-7329 (© 2022 — The authors. Published by IOS Press. This is an Open Access article distributed under the terms of the
Creative Commons Attribution-NonCommercial License (CC BY-NC 4.0).


https://creativecommons.org/licenses/by-nc/4.0/

S174 K. Zhou et al. / Deep learning-based breast region extraction

increasing rapidly. There were 367,900 registered cases of China in 2018, making up a total of 19.2%
of all female cancers that year [2]. This can be compared to a registered incidence of 268,600 in 2015,
making up a total of 15.1% of all female cancers [3]. However, only 13% of the cases are included in the
national cancer registries [4], which makes a particularly urgent need for improvements in the diagnosis
and treatment of breast cancer in China.

So long as the cases are accurately diagnosed in their early stages, breast cancer can be cured by
surgery and adjuvant therapy, although some of the cases still result in mortality [S]. Mammography
is considered to be one of the most effective and important methods for early breast cancer detection.
It has been verified as a reliable and essential screening technique by obtaining visual images of the
internal structure of breasts using a low energy procedure [6]. However, examining large numbers of
mammographic images manually takes time and there is an error rate of between 10% and 30% due
to human factors such as “experience, specialization and number of mammograms read per year” [7],
with the latter being the most significant. In view of this, computer-aided detection and diagnosis (CAD)
systems have the advantage of using standardized operations and building upon a body of experience that
is typically more extensive than any individual radiologist can achieve. This has led to the widespread
development of computer-based supports [8—11].

Mammographic images inevitably capture both the breast region and the non-breast region. As a result,
there are always background elements, especially those associated with the pectoral muscle region. Both
of these regions may contain prenoise, such as the labels used by radiologists to identify certain features
and patient information [12], noise (such as salt and pepper noise, gaussian noise, speckling and Poisson
noise) and artifacts that can influence the performance of a CAD system [13]. The areas of poor contrast,
high and low intensity and the mix of regular or irregular shapes in the pectoral muscle region and around
the labels can also confuse CAD systems [14]. A variety of preprocessing methods have therefore been
proposed to improve the quality of mammograms, so that they can be processed more accurately [15,16].

This paper presents a new breast region extraction method which combines pre-processing methods
and deep learning-based semantic segmentation. Not only is the method able to overcome the challenges
mentioned above, but it also returns the accurate breast region which is treated as region of interest (ROI)
for further steps of development of CAD systems. For many researches such as breast cancer detection
and breast cancer risk prediction, the breast region part can be the fundamental but crucial ROI as the input
(i.e. [17]). For CAD systems, they also need to reduce the amount of calculation of the image without
losing essential information (i.e. breast region) and exclude the background in the following processing
steps by identifying breast border, pectoral muscle which may disturb performance of breast cancer
detection. Accuracy and runtime are also taken into consideration to improve the accuracy of the overall
CAD system [18]. The method starts from pre-processing step with transforming the images into a format
required by the deep learning model, then a non-linear median filter is used to remove noise and artifacts.
A Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm is then used to enhance the
contrast in the images, thereby improving the distinction between the breast region, the pectoral muscle
and the background when moving on to the next phase. Semantic segmentation step contains feature
extraction and prediction implemented by applying a convolutional deep learning technique (Deeplab
v3+ [19]) with a modified network backbone (Xception [20]) to fine-tune a convolutional network
model to be able to perform effective semantic segmentation. By applying manual weighting the model
achieves better convergence during training, which ensures the proposed method attaining very high mloU
rates (97.39% of breast region). The model is also trained on INbreast dataset with good segmentation
performance. Thus, the model has significant promise for the improvement of existing CAD system-based
methods to the processing of mammograms.
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The paper is organized as follows. Section 2 provides a brief outline of the related works, including
some recent research as well as methods applied in the proposed method, and the proposed extraction
method is presented. An experimental application of the proposed method and its results are presented
and discussed in Section 3. Section 4 gives the conclusion and outlook.

2. Related works and proposed method

This section contains mainly two components. Section 2.1 includes several previous researches related
to this method and Section 2.2 introduces the proposed method. In Section 2.1.1 some traditional pre-
processing methods are mentioned with some recent researches which apply series of algorithms to achieve
the objective of pre-processing and breast region extraction. Discussion of advantages and drawbacks will
then be given. The development of deep learning and its role in medical image segmentation especially
breast mammographic image will be introduced in Section 2.1.2, as well as some researches applying
deep learning models. Finally, a contribution of the proposed method is presented.

2.1. Related works

2.1.1. Traditional pre-processing methods

Pre-processing is an important process in mammographic images, and noise suppression is one of the
fundamental operations. Median filter is widely used in medical images. It is effectively a non-linear
filter that works well for grayscale images. As well as suppressing speckles and salt and pepper noise,
a median filter also preserves the image contours, which is important in this context for being able to
adequately distinguish between the pectoral muscle and the breast region. A median filter is a particular
kind of low-pass filter. It takes all the pixel values for a designated area within an image and enters them
in an element array. The element array is then sorted to arrive at the median value. All the median values
for all the element arrays established for all the pixels are then output as an image array. The median filter
is applied iteratively until the whole image has been treated. Mammograms have poor levels of contrast
and are blurred, which can make them difficult to interpret. Contrast enhancement emphasizes specific
regions, thus assisting the next step of segmentation. As in some studies [21-23], a CLAHE algorithm
is applied [24]. It extends upon Adaptive Histogram Equalization (AHE) algorithms by allowing the
manual setting of the height of a histogram, which is called the clip limit. The value of the limit is from 0
to 1 and it enables more refined enhancement calculations [21]. Basically, the higher the clip limit, the
greater the contrast. Usually, the value for this is set to 0.01 by default. The CLAHE algorithm operates
on small pieces of the whole image. The overall image is divided up into blocks called tiles. The contrast
transformation function is calculated on each tile so that the contrast is enhanced on each tile. This is
based on an approximation that takes both the histogram specified by the distribution value and the
specific histogram of the tile into account. The objective is to enhance the contrast for each tile until it
more or less matches the overall distribution and desired shape for the histogram. Once the clip limit has
been set and the histograms have been redistributed, the transformation function is applied. It works upon
a probability density function of the input mammogram’s grayscale value and the total number of pixels
in the image. Each of the tiles is combined with one another using bilinear interpolation, which gets rid
of any artificially-induced boundaries. The contrast in homogenous areas is limited so as to minimize the
risk of amplifying any noise and to reduce any potential shadows at the edges.

Median-filter and CLAHE are widely used in some recent related researches. With regard to the
preprocessing of digital mammograms, Lbachir et al. developed a method for handling several of the key
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steps necessary for the preprocessing of mammograms for CAD systems [25]. They applied a median
filter to reduce the salt and pepper noise and a mean filter to deal with false contours produced by the
initial noise suppression. Then a CLAHE algorithm was applied. After that artifact removal and label
suppression were implemented by applying thresholding and morphological operations. Finally, an active
contours method was applied for pectoral muscle suppression. This method was tested on the mini-MIAS
database and achieved an accuracy of 98.75%. Basheer et al. [26] have presented a method that first of all
flips all the right breast images so that all images are effectively left breast images. Then a thresholding
method and an average filter are applied to remove noise and artifacts. For the purposes of pectoral
muscle segmentation, a piecewise method is adopted that aims to find the threshold values and find the
mid-point between them by comparing and calculating the average values. Finally, translation and rotation
are applied to achieve mammogram alignment. The method was tested on the mini-MIAS database and
achieved an accuracy of 100% for the removal of noise and labels. The removal of artifacts obtained an
accuracy of 99.68%, the pectoral muscle extraction, 92.85%, and the mammogram alignment, 100%.
Somewhat similarly, Maitra et al. [21] applied a preprocessing method to the mini-MIAS database that
first transformed all images to the same orientation. Then, a CLAHE algorithm was applied for contrast
enhancement. Finally, a seeded region growing (SRG) method was applied to achieve image segmentation
and identify the pectoral muscles, so that they could be suppressed. This method achieved an accuracy of
95.71%. Adopting a different approach, Bae et al. [27] have proposed a method that focuses on pectoral
muscle detection. The artifacts are first removed by applying a labeling algorithm. Then, a median filter is
used for noise removal and the CLAHE algorithm is used for contrast enhancement. The detection of
candidate pectoral muscle is then achieved by correcting the given image using brightness weights and
pectoral muscle edge detection. This results in a candidate contour. The final step is the actual pectoral
muscle detection. Here, Hough transformation is used to detect edges and lines within the image. Missing
lines are then filled in by connecting lines with similar angles. The pectoral muscle detection is then
achieved by applying the RANSAC (random sample consensus) method. This approach produced results
with a 92.2% accuracy when applied to the mini-MIAS database.

From the researches above, it can be concluded that noise suppression, artifact and label removal and
pectoral muscle suppression are the common ways of implementing pre-processing methods. Through
several steps of removing these unnecessary parts, the breast region is naturally extracted. Although
traditional methods have reached ideal results such as accuracy, there are still drawbacks. Most of them
are time consuming so that majority of the methods cannot be used for real-time operation. Some of
the methods (i.e. [21,26]) have to normalize images by flipping them to face the same direction so as to
proceed further operations, which lacks in robustness.

2.1.2. Deep learning based semantic segmentation

As the information contained in a mammogram image relates to the breast and pectoral muscle regions,
suppressing the pectoral muscle information and enabling segmentation of the regions can be key for the
effective use of a mammogram by CAD systems. Clearly, the breast region contains most of the salient
detail, so a great deal of research effort has been devoted to effectively bringing the breast information to
the fore [23,29,30]. Semantic segmentation is usually applied once features are identified. For computer
vision systems to accomplish this, it is necessary to undertake classification at the pixel level. This should
lead to several groups that each contain all the pixels belonging to one specific category. The Texton
Forest method and classifiers based on random forest algorithms were typically used to accomplish this
before the widespread adoption of deep learning techniques [31,32]. After the notable success of Fully
Convolutional Network (FCN) models in relation to semantic segmentation [33,34], there was a move
towards using end-to-end convolutional deep learning models instead [35,36].
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Deep learning approaches are increasingly being used throughout medical image processing, not only
for mammograms but also for tomosynthesis and ultrasound-based imaging [37]. In the vast majority of
cases, some kind of convolutional neural network (CNN) forms the basis of the approach. CNN’s are made
up of input and output layers with multiple hidden layers in-between that are typically convolutional
layers, meaning that they convolve upon the application of some kind of mathematical function. In
image processing they can use the convolved layers to learn weights or biases that enable them to assign
different degrees of importance to different aspects of an image and to differentiate between them. The
first application of a CNN to mammography was by Sahiner et al. in 1996 [38]. Since then, a diverse
range of variations upon the basic idea of a CNN have been applied, including a four-layer Adaptive
Deconvolution Network (ADM), which was an early kind of CNN used for mass classification [39],
the addition of support vector machines (SVMs) for classification [28,40—42], modified region proposal
CNNs (R-CNNs) [35,43], combinations of CNN and a stacked autoencoder (CNN-SAE) [44], combining
CNN mass detection with extreme learning machine (ELM) clustering [45], the use of a full resolution
convolutional network (FrCN) for segmentation before applying a CNN [46,47], or even a combination
of several different kinds of CNNs [48-50]. To some extent, these variations are the result of what aspect
of a mammogram is being focused upon and its perceived utility. Thus, some studies are interested in
providing information about variations in breast density [40,44]. Some want to identify and pinpoint
masses [35,43,45,51-54]. Some are interested in classifying lesions [55]. Some want to facilitate tissue
classification [56]. Others want to classify the risk of developing cancer [57,58] and some are focused on
a combination of these various things [59]. One of the key distinctions between various approaches is
the approach taken to training the network. In some instances, a pretrained network is used, where the
network has already been trained using data from an established database [40,51,59], such as ImageNet-
1k [60]. Some approaches use fully supervised methods, which explicitly use models to map between
different examples and variables, typically to solve classification or regression problems. Others are
only semi-supervised [53], making use of a mixture of labelled and unlabeled examples, or weakly
supervised [54] making use of data where the labelling is somehow noisy or imprecise. Some studies have
adopted an unsupervised strategy, where a model is not used to map to variables but rather to perform
operations directly upon the input [44,45]. These kinds of studies are typically focused on objectives such
as clustering or estimating density. At the opposite end of the scale, some networks are hand-crafted,
where experts specifically define the features as opposed to them being learned automatically [48,55].

A number of deep learning approaches have recently begun to be developed that have the capacity
to overcome the above issues by taking original images as input, automatically extracting their various
features and then learning directly from their individual pixels [28]. They are also associated with
improving training precision [61]. A common feature of different deep learning approaches is to convert
the original mammograms to a representation of their features across a number of layers, upon which
different filters or operations can be applied [28]. Rodriguez-Ruiz et al. [62] have presented a deep
learning method that is chiefly focused on pectoral muscle segmentation. The central feature of the
method is an automatic model based on a u-net architecture, which is a convolutional network. The u-net
architecture is principally an encoder-decoder system. This is highly effective for biomedical image
segmentation [63]. The method was tested on 125 images of three different types which are digital
breast tomosynthesis (DBT), synthetic mammography (SM) and digital mammography (DM). The results
indicated a dice similarity coefficient (DSC) of between 0.947 and 0.970.

There are also some methods developed to solve challenges other than mammogram images. For
development of identifying, segmenting and classifying cell membranes and nuclei from human epidermal
growth factor receptor-2 (HER2), Saha et al. present a deep learning framework constructed by mainly
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convolution and deconvolution part [64]. They apply long short-term memory (LSTM) which is a
special RNN architecture to help identify and preserve features (i.e. cellular and textural structures) from
convolution part then transit to deconvolution part. LSTM is special in avoiding gradient loss or gradient
explosion and widely used in speech recognition and handwriting recognition. They use 51 and 28 WSIs
from the database of an online HER2 image database of the Department of Computer Science, University
of Warwick, United Kingdom, for training and evaluating. The input size of each image is 251%251, They
report the effect of the method at precision of 96.64%, recall of 96.79%, f-score of 96.71%, NPV of
93.08%, accuracy of 98.33%, false positive rate (FPR) of 6.84% and AUC of 94%. The authors state that
the proposed method is a supplement of research on segmentation and performance measurement of cell
membranes and nuclei.

Saha et al. present a deep neural network structured by an encoder, a decoder and a scoring system
which is actually a two-stage network [65]. The encoder and decoder part inspired by U-net and Segnet
accomplish the goal of segmentation, and the scoring layer is responsible for scoring of ER and PR using
IHC images. They use a private database containing 600 images with a size of 2048*%1536 which are
divided into 100*100 at every batch. A proportion of 65% and 35% for training and evaluating with no
overlap existing ensures the number of samples for each process. The batch size of training and evaluating
is set to 28, the testing interval is 4500, the maximum iteration is 500,000, the learning rate is 0.01, the
weight decay is 0.045 and the momentum is 0.9. The optimizer is stochastic gradient descent (SGD). They
achieve the performance of the method at a precision of 95.87%, recall of 95.64%, f-score of 96.49%,
NPV of 92.13%, accuracy of 94.53%, AUC of 96% and higher scores than pathologists. The authors
claim the proposed method is a valuable supplement of existing ER and PR scoring.

Both of the research above demonstrates the improvement of segmentation using well designed deep
learning models, some additional scoring layers give additional evaluation of specific issues. However,
the situation of breast extraction in mammogram images is different. Instead of segmenting multiple cells
in one image, there is usually one large complete area which needs to extract. This may result in the lack
of usefulness of scoring systems which originally work effectively. The need of dividing pectoral muscle
from the biggest high gray level areas may demand deeper layers of the model, different levels of features
and larger receptive field. Nonetheless, the research above proved the successful apply of deep learning.

One of the goals when using deep learning approaches is to be able to arrive at results that can match,
or even exceed human performance, though only a few come near to this at present (i.e. [52]). The
accuracy associated with deep learning approaches is variable, ranging from 64% [41], which is only
marginally better than conventional CAD-based results to 99% [46,47]. Semantic segmentation is strongly
associated with achieving better results but the use of semantic segmentation is also varied. A notable
move towards trying to accentuate the importance of semantic segmentation came with the work of
Kisilev et al. [43] where they attempted to apply semantic segmentation in relation to the descriptors
commonly used in mammography, i.e. shape, margin and density. Some recent approaches have moved
away from conventional CNNs towards other deep learning models, such as conditional generative
adversarial networks (cGANs) [66], which can speed up the process by avoiding the need for pixel or
patch-based classification, but it is not clear that these achieve any greater degrees of accuracy than
the conventional methods. Most recently, the state-of-the-art has moved towards building upon fully
convolutional networks (FCNs) by using u-net architectures, using instance segmentation networks and
end-to-end convolutional networks, such as DeepLab and Mask RCNN, which promise to offer especially
high levels of accuracy [67,68].

Whilst the capacity of deep learning to improve upon previous approaches to segmentation is clear,
there are several problems that have been identified with adopting deep learning approaches that have
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yet to be fully overcome. One of the main challenges is that the training data is key to the effectiveness
of deep learning, so very large training datasets significantly improve the results [61]. However, large
public datasets of mammograms are not currently available so most researchers are obliged to still
turn to older scanned datasets such as mini-MIAS [37,69]. This has driven research to using various
degrees of supervision [53,54], transfer learning [59,70], or the handcrafting of features [48,52]. Many
projects adopt a two-stage process where the first stage involves the detection of candidate lesions before
passing potentially malignant results to a deep CNN [52,69]. Another way around the problem is to
avoid a cascaded CNN by using region proposal networks (R-CNNs) [35,43]. Nonetheless, on the rare
occasions that very large proprietary datasets rather than public ones have been made available to certain
teams, the results have been far superior [69]. Another noted issue is the degree of complexity and thus
greater computational and time-related costs associated with the use of deep learning approaches [46].
With hand-crafting and varying degrees of supervision also being a vital aspect of the training for most
methods, there is also an ongoing issue or sourcing the relevant knowledge and the time and cost involved
in making it available. Some approaches have also been criticized for being overly-dependent upon
subjective criteria such as grayscale intensity [42,61].

In this study, a DeepLab v3-+-based [19] approach is adopted that uses atrous convolution in combina-
tion with spatial pyramid pooling and an adapted Xception model [20]. This is a deep convolutional neural
network that allows for the capture of rich semantic information and effective semantic segmentation at
an adaptable computational cost that can be tailored to real-time needs, while providing higher rates of
accuracy than the original DeepLab approach [67,71]. The principal features of this model are spatial
pyramid pooling and an encoder-decoder. Originally, several parallel atrous convolutions (Atrous Spatial
Pyramid Pooling) with different rates were used to deliver multi-scale information [71], to good effect.
Atrous convolutions (also known as dilated convolutions) introduce a dilation rate that applies a spacing
between the values of a kernel so as to expand the field of view at the same basic computational cost.
Spatial pyramid pooling enables different layers to use different dilation rates in parallel so as to acquire
extremely rich contextual information for segmentation. In [19], this was extended by using Deeplab v3
as an encoder and designing a simple but effective decoder on top. As a further step, a modified Xception
model [20] is used as the network backbone, which provides enhanced object detection and semantic
segmentation functionality. It thus sets aside many of the potential issues outlined above by delivering
semantic segmentation at a lower cost with greater accuracy. This modified network was pretrained on
the ImageNet-1k dataset [60], which is based on the WordNet hierarchy, with an average of at least 500
images per node. The approach has previously been tested on the benchmark semantic segmentation
dataset PASCAL VOC 2012 [72] and the high-quality annotated dataset Cityscapes [73] and has delivered
state-of-the-art results, but it has rarely been applied in the field of mammography.

The main contribution of this paper is shown as follows. The setting of weights for each class help
fine-tune the pre-trained Deeplab model which achieved better convergence during training process, so as
to accomplish the model with a very small size of mammogram dataset. The input images are processed
by proper pre-processing methods, which help improve the performance of the method. Considering the
situation of limited samples of mammogram images publicly available, the state-of-the-art performance of
the method indicates success of fine-tuning pre-trained networks which is a supplement and improvement
of existing methods. The low false positive rate and runtime also strongly recommend a clinical attempt
and a fundamental step of further development of CAD systems.

2.2. Proposed method

The proposed method contains mainly two steps, which are pre-processing and semantic segmentation.
Based on previous researches and actual requirements of the method, the pre-processing step of the
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Fig. 1. The basic workflow of the proposed method. The red part of the output is the breast region.

proposed method is divided into several steps which are image format and grayscale adjustment, noise
suppression and contrast enhancement. The first step aims to transform the original images to a grayscale
jpg format which is the requirement of median-filter. The noise suppression seeks to suppress any salt
and pepper noise in the mammograms. The contrast enhancement phase focuses on arriving at a clearer
presentation of specific regions. After pre-processing step, the processed images are ready for semantic
segmentation. The feature is first extracted at different levels, then a concatenation of the features is
processed, which will then be up-sampled to the original size of the input. A prediction step is finally
deployed to extract breast region by identifying background, breast region and pectoral muscle, which
means a prediction of each pixel into three classes above. The flowchart for this method is shown in
Fig. 1.

2.2.1. Pre-processing

As the mammogram images used to establish this method were from the mini-MIAS database, the
original format is pgm and all of the images are in color with the size of 1024*1024. To enable the other
steps in the process, they need to be transformed to a jpg format and in grayscale. The process starts
with loading each pgm file as a matrix, which is then exported as a jpg file. The jpg file will be judged
by the condition of dimension, making sure all files are in grayscale. For the noise suppression step, a
median filter with a window size of 3*3 is applied to suppress the noise. Assuming a coordinate (x, i) is
in the core of the window, the rest 8 coordinates are (z — 1,y — 1), (x,y — 1), (x + 1,y — 1), (x — 1, 9),
x4+ 1Ly, x+1,y+1),(x—1,y+1)and (z,y + 1). The new value of (z,y) is the median value
of all the 9 coordinates. In order to enhance contrast, a CLAHE algorithm is applied. The tile size was
set to 8*8, the clip limit value was set to 0.01, the number of Bins was set to 256, and the distribution
of the histogram was uniform. The image is first divided into 8*8 non-overlapping regions, then the
histogram is calculated in each region. Each histogram is redistributed in uniform format with a clip
limit 0.01, the redundant part will be clipped and averagely inserted to the bottom of the histogram. All
histograms are then optimized by a transformation function. The images are resized to 512*512 after
contrast enhancement for the next phase. All the process above is implemented in Matlab R2018b. The
effect of the pre-processing step is shown in Fig. 2.

2.2.2. Semantic segmentation
Semantic segmentation is the novel aspect of the proposed method and is where the advantages of
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Fig. 2. The effects of pre-processing step. The principal noise in the original image (a), is a black line at the bottom of the
left-hand image. The image (b) presents the effect of the median filter. The black line has been erased without destroying the
other detailed information. The image (c) is the one which applies CLAHE algorithm on image (b). Note the greater visibility of
the pectoral muscle in the right-hand image.

deep learning are brought to bear. Although u-net model has already been applied for breast extraction,
Deeplab v3+ model has not yet been applied to solve this challenge which has better performance on
semantic segmentation.

The semantic segmentation step applies transfer learning, and a modified xception network is applied
as backbone. All the max pooling layers are replaced by depthwise separable convolution layers, and
batch normalization and ReLLU are added after each 3*3 depth convolution layer. Because the dataset
used for training and evaluating is much less than ImageNet, the parameters of the network are not tuned
massively. As the number of classes is different between the pretrained network and the training dataset,
the last layer is removed remaining logits only. Manual calculated weights are taken into consideration.
The value setting of weights of the network is 1.0 by default because ImageNet has a large number of
classes, which makes each class containing nearly equal weight. However, the three classes labeled in the
training dataset are naturally imbalanced which requires proper value set of weight for each class. The
sum of pixels belonging to three classes is calculated, and the least common multiple of three classes
is then calculated. The multiple of each class is regarded as weight. The equation of the process can be
presented as

Wn=L/Cn (1)

where W denotes weight, L denotes least common multiple, C' denotes class and n denotes number of
the class. The weight of the image is a sum of each class multiplying the related weight. The equation of
calculating the weight is
n
Weight = z(ci*wi) )
i=0

where C' denotes the label class, W denotes the weight of the class, ¢ denotes the number of the class
from O to n, n denotes the total amount of the class. The model takes softmax cross entropy loss as loss
function, the equation is shown as follows.

exnk

Pnk = =1 3)
! o e
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C

N
-1
Loss = N;log(pnln),ln eo,1,...,K —1] 4)

Where X denotes samples, k£ denotes class, N denotes number of samples of mini-batch, p denotes
softmax. The effect of semantic segmentation is shown in Fig. 3.

3. Results
3.1. Datasets, environments and data preparation

The majority of previous research has drawn upon two key mammography image databases. These are
Mini-MIAS (Mammographic Image Analysis Society Digital Mammogram Database) [74] and DDSM
(Digital Database for Screening Mammography) [75,76], though some studies have also started to use the
annotated INbreast database [77]. Mini-MIAS is a database containing 322 mammographic images taken
from a mediolateral point of view [78]. The size of all the images is 1024*1024 pixels. The database is
arranged in pairs of images, with each odd image containing the right mammogram and each even on the
left mammogram, from a single patient. All of the images are indexed in detail to incorporate, which are
the character of the background tissue, the class of abnormality, the severity of the abnormality, the x and
y coordinates of the center of the abnormality, and its approximate radius. DDSM is designed to support
digital mammogram research and the development of CAD systems [75,76]. The database contains 2620
cases with four distinct views. Some detailed information is also provided, such as information about the
patient, information about the image, and the location and type of possible abnormalities. The INbreast
database contains 410 images from 115 different cases. The images are either 3328*4084 or 2560*3328
pixels, depending on the compression applied at the point of acquisition. The images are pre-annotated
by two mammography experts (one validating the other) and contain six types of findings which are
asymmetries, calcifications, distortion, masses and multiple findings and normal [77].

In order to test the proposed approach, an experiment was undertaken using images from the mini-MIAS
database. All 322 pgm format images from the mini-MIAS database were transformed into 1024*1024
jpg format images. They were then converted to grayscale. After applying the median filter and CLAHE
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Table 1
Result of deep learning models
Model Accuracy Precision  Recall  F-score Miou auc
u-net 96.11% 97.28%  90.41% 93.58% 95.28%  97.62%

Deeplab v34+  98.94% 98.43%  98.95% 98.67% 96.99% 98.80%

algorithm, the images were resized to 512*512. This was necessary for the next phase because of memory
constraints in the research environment. The computer used for the experiment had 16 GB RAM, its
CPU was an Intel Core 17-9700 and the operating system was Windows 10 home edition. The computer
also had a NVIDIA GeForce GTX 1660 Ti graphics card with 6G memory. Initially, the training and
evaluation of the deep learning model used 1024*1024 images. However, the program returned an OOM
exception, which is a typical problem when there is insufficient memory.

Prior to the semantic segmentation, the processed images were labeled using LabelMe [79], a web-
based annotation tool for annotating images. The breast region was labeled as class 1 and the pectoral
muscle region was labeled as class 2. The rest region was treated as background, which was automatically
labeled as class 0. To avoid there not being enough samples for the training, about 70% of the images
were selected as training images and the rest as evaluation images. So, 220 of the original 322 images
were randomly picked as training images and the other 102 were used for evaluation.

3.2. Comparison of different deep learning models

A comparison experiment is made between u-net model and Deeplab model. From the labelling above,
pectoral muscle class is removed so that there is class O representing background and class 1 representing
breast region. Both models use the same images and labels.

For the u-net model, the learning rate is set to 0.0001, batch size is 1, the steps per epoch is 220 and
epoch is 10. It applies binary cross entropy loss as loss function, which is a special case of softmax cross
entropy loss.

For the Deeplab model, the atrous rates are set at 6, 12 and 18, the base learning rate is set to 0.0001,
the cropped size of the images is set to 513*513 and the batch size is set at 2. A larger batch size would
have been beneficial, but 2 is the best the computer being used for the experiment could supply. The
manual weight of class 0 is 0.30008681 and the weight of class 1 is 0.54401687. As the pretrained model
had different features and numbers of classes to the medical images, the last layer was removed to leave
just the logits. In the training phase, 50000 steps were trained, running the CPU and GPU in parallel.

Both of the models are implemented in TensorFlow [80], and Keras is also applied for u-net. They
also have the same input images prepared in Section 3.1. The Deeplab model reaches better performance
through calculation. Considering both models have similar encoder-decoder structure, only deeplab model
concatenates conv2 feature map with Deeplab v3 feature map when u-net model generates feature map
with convolution and max pooling. Another difference is the use of manual weight in the Deeplab model.
The results of both models are shown in Table 1. Although various evaluation analysis parameters are
applied such as accuracy, precision, recall, f_score, auc, this paper takes mean intersecion over union
(miou) as the main reference to evaluate the performance of a model, for it is widely used as the standard
performance measure in networks charging segmentation. Specificity and false positive rate (FPR)will
also be given to the model which performs highest miou at the end of all comparison. The equations of
calculating these evaluation analysis measures are shown as follows [64,65,81].

TP+ TN

A - 5
CurayY = Trp LT FN+TN + FP )
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Table 2
Results of 2-class and 3-class segmentation

Model  Accuracy Precision Recall  F-score Miou auc

2-class  98.94% 98.43%  98.95% 98.67% 96.99% 98.8%
3-class  98.98% 98.48%  98.58% 98.48% 97.39%  98.98%

Precisi TP ©)
recision = ————
TP+ FP
Recall = rre (7
CA = TPLFN
2 % Precision * Recall
- - 8
Jscore Precision + Recall ®)
TN
Specificity = ———— 9
pecificity = T Fp ©)
FPR = 1 — Specificity (10)
TP
IoU = 11
mlol = b L FN + FP (b

Where TP denotes true positive, TN denotes true negative, FP denotes false positive, FN denotes false
negative.

3.3. Comparison of 2-class segmentation and 3-class segmentation

The purpose of the comparison is to test the influence of labeling pectoral muscle. As an extension of
the comparison above, a comparison experiment between different labels is made. The label of 2-class
remains the same as it is set in phase 3.2, and the label of 3-class remains the same as it is set in phase 3.1.
The parameters and input images of both experiments are the same, only manual weight of the 2-class is
0.30008681 of class 0 and 0.54401687 of class 1, and weight of the 3-class is 1.9908 of class 0, 3.32696
of class 1 and 24.8 of class 2. The 3-class segmentation reaches better performance. Because the pectoral
muscle region is very near to the breast region and the grayscale of pectoral muscle is very different from
the background, the performance of the model is better if the pectoral muscle is labeled. The result of two
experiments is shown in Table 2.

3.4. Comparison of influence of pre-processing methods

The purpose of the comparison is to test the influence of the pre-processing methods with the same
labels for training. The first dataset is the original jpg files without noise suppression and contrast
enhancement, the second is the jpg files with noise suppression, the third is the jpg files with contrast
enhancement and the last is the jpg files with noise suppression and contrast enhancement. The results of
the comparison are shown in Table 3. The results show that the pre-processing methods can improve the
performance of semantic segmentation.

3.5. Comparison with other methods

After exporting the model and evaluating it with the 102 images for evaluating, the sensitivity, speci-
ficity, false positive rate (FPR) and runtime are also calculated. The model reaches a sensitivity of 98.58%,
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Table 3
Results of the comparison between 4 datasets. The abbreviation Ns denotes noise suppres-
sion, ce denotes contrast enhancement, acc denotes accuracy, pre denotes precision, re
denotes recall, f denotes f-score

Dataset Ns Ce Acc Pre Re F Miou auc

Oriseg X x  9886% 9597% 9832% 97.02% 97.29% 98.52%
Orimed +/ x 98.88% 98.42% 98.52% 98.47% 97.38%  98.85%
Oricla X v/ 9889% 98.44% 98.52% 98.48% 97.36% 98.81%
Fullseg +/ +/ 9898% 98.48% 98.58% 98.48% 97.39% 98.98%

Table 4
Comparison of the accuracy of various methods evaluated on
the mini-MIAS database

Method Publication Images Accuracy
Maitra et al. [21] 2012 322 95.71%
Li et al. [82] 2013 322 90.06%
Mustra et al. [83] 2013 320 96.57%
Bae et al. [27] 2016 322 92.2%
Taghanaki et al. [84] 2017 322 95%
Basheer et al. [26] 2017 - 92.85%
Shen et al. [85] 2018 322 96.89%
Lbachir et al. [25] 2018 322 98.75%
Rahman et al. [86] 2019 200 97.50%
Elmoufidi. [87] 2019 322 97.89%
Proposed method - 102 98.98%

Table 5

Comparison of the accuracy of various methods evaluated on
the INbreast database

Method Publication Images Accuracy
Taghanaki et al. [84] 2017 197 96%
Lbachir et al. [25] 2018 40 90%
Rahman et al. [86] 2019 200 94.50%
Proposed method - 410 99.12%

specificity of 99.25% and FPR of 0.75%. The time consumed to segment each image is between 0.12 s
and 0.16 s. As most of the recent research applied accuracy as evaluation analysis, a comparison based on
accuracy is shown in Table 4. The effect of semantic segmentation is shown in Fig. 4.

As the number of images for evaluation is too small to be persuasive, images from INbreast databases
are also used to evaluate the model. All 410 dcm format images from the INbreast database are used
to conduct further evaluation. First, they are transformed to png format files by applying MicroDicom,
which is a free software that has a number of useful medical image manipulation functions, including
being able to read and convert them from dem format to other formats. After this, each image is loaded in
Matlab and transformed to grayscale, subjected to pre-processing step, then saved as a jpg format of the
original size. This evaluation also attempts to test the adaptability of the model dealing with different
sizes of images. The time consumed to segment each image is between 0.2 s and 0.26 s. The evaluation
on INbreast achieves an accuracy of 99.12%, precision of 98.06%, recall of 98.93%, f-score of 98.48%,
miou of 97.14%, specificity of 99.17%, sensitivity of 98.93%, FPR of 0.83%. Even when evaluating
images with different sizes, the model performs ideally. A comparison between various approaches using
the INbreast database is given in Table 5. The effect of the segmentation is shown in Fig. 5.
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Fig. 4. Effect of semantic segmentation on mini-MIAS. Group a and c are the images at right MLO view, group b and d are the
images at left MLO view. For each group, the image on the left is the input, the middle is the result image called segmentation
map with red label representing breast region and green label representing pectoral muscle region. On the right is the overlay
which covers labels to the original image. It can be seen that a lack of contrast between breast and pectoral muscle will lower

performance of the model.
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Fig. 5. Effect of semantic segmentation on INbreast dataset. Group a and b are at left MLO views, group c is at right CC view,
group d is at right MLO view. It can be seen that the pre-processing step has performance limitation in terms of some specific

cases.
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4. Conclusion

The proposed method shows state-of-the-art performance at extracting breast region from mammo-
graphic images. Combining median-filter and CLAHE which are widely used in recent research, the
thought of applying semantic segmentation supported by deep learning models achieves both high ac-
curacy and short runtime. Wide range of evaluation on two commonly used mammography datasets
proves the ability and adaptability of the method. Being capable of segmenting breast region from all
four views of mammographic images using less than 1 second ensures wide application of the method in
real-time operation. As the proposed method proves success of transfer learning with pre-trained network
segmenting mammographic images, one direction of future work can be semantic segmentation supported
by transfer learning based on a newly-designed deep learning model pretrained with a large number of
samples which is more targeted to mammography segmentation.
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