
Technology and Health Care 30 (2022) S143–S153 S143
DOI 10.3233/THC-228014
IOS Press

Acne detection and severity evaluation with
interpretable convolutional neural network
models

Hao Wena,b, Wenjian Yua,∗, Yuanqing Wub,∗, Jun Zhaob, Xiaolong Liub,
Zhexiang Kuangb and Rong Fanb

aDepartment of Computer Science and Technology, BNRist, Tsinghua University, Beijing, China
bBeijing Jingdong Shangke Information Technology Co., Ltd, Beijing, China

Abstract.
BACKGROUND: Acne vulgaris is one of the most prevalent skin conditions, which harms not only the patients’ physiological
conditions, but also their mental health. Early diagnosis and accurate continuous self-monitoring could help control and alleviate
their discomfort.
OBJECTIVE: We focus on the development and comparison of deep learning models for locating acne lesions on facial images,
thus making estimations on the acne severity on faces via medical criterion.
METHODS: Different from most existing literature on facial acne analysis, the considered models in this study are object
detection models with convolutional neural network (CNN) as backbone and has better interpretability. Thus, they produce more
credible results of acne detection and facial acne severity evaluation.
RESULTS: Experiments with real data validate the effectiveness of these models. The highest mean average precision (mAP) is
0.536 on an open source dataset. Corresponding error of acne lesion counting can be as low as 0.43 ± 6.65 on this dataset.
CONCLUSIONS: The presented models have been released to public via deployed as a freely accessible WeChat applet service,
which provides continuous out-of-hospital self-monitoring to patients. This also aids the dermatologists to track the progress of
this disease and to assess the effectiveness of treatment.
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1. Introduction

Medical image processing has long been an active research field. The resources for the research
of medical image processing are rich, including MRI, X-ray, CT, dermoscopy images, etc. Among
these resources, images taken by smartphones, or other portable cameras, are the most accessible and
the most convenient for the purpose of out-of-hospital monitoring [1]. Accessibility and the ability to
conduct out-of-hospital monitoring are often crucial to whether or not the research results could be
widely accepted and put into practical use, especially as APPs for smartphones. More and more medical
research work, for example [2–4], are being carried out with images taken by portable devices as their
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main resource of study. The company SkinVision published a series of papers [5–8] concerning the
usage of smartphones for analyzing skin conditions. Research work, harnessing the powerfulness of the
convolutional neural networks (CNNs), on skin diseases inspired us most and also directly motivated
our studies. In [9], researchers made a comparative study on performances of 5 CNN models, namely
ResNet-50, Inception-v3, DenseNet121, Xception and Inception-ResNet-v2, on the classification of 6
common facial skin diseases. They pretrained these models using other body part images and performed
transfer learning using facial images. The best performance was achieved by Inception-ResNet-v2 with
average precision 63.7% and average recall 67.2%. More importantly, a new dataset XiangyaDerm was
proposed in this paper. This dataset, as was later described in more details in [10], is much larger in
its number of images than other existing open-access datasets. Most recently, a group from Google
Health published a study [11] about deep learning systems for the detection of a broader range of skin
diseases. Their system achieved 71% top-1 and 93% top-3 accuracies respectively, outperforming the
dermatologists.

Acne vulgaris, usually referred to as acne, is one of the most prevalent skin conditions. Although
typically seen among adolescents, it can persist into adulthood. Acne harms not only the patients’
physiological conditions, but also their mental health, by laying detrimental effects on self-esteem [12].
Early diagnosis and accurate continuous self-monitoring could help control and alleviate discomfort
brought by acne. Self-monitoring here includes a broad range of concepts, including self-diagnosis,
self-evaluation of the effect of treatment or therapy provided by the dermatologists, etc., hence helps
both the patients and the dermatologists. Hayashi et al. [13] gave a comprehensive study on statistical
relations between acne severity and the number of acne lesions. Particularly, they gave easy-to-use rules
for estimating acne severity from lesion counting (of papules and pustules, which are two subtypes of
acne) per half face. However, interpretability, which makes predictions more convincing, is an important
issue for the existing automated diagnosis systems. It is actually a common weakness of those end-to-end
deep learning models. “end-to-end” here refers to producing solely the number of acne lesions or the level
of acne severity. Therefore in this paper, we focus on the application of different object detection CNN
models on the problem of locating acne lesions in facial images. Then, acne severity could automatically
be produced via numerical grading schemes, thus serving our initial purpose of self-monitoring.

Our contributions in this paper could be summarized as follows. First of all, we explore the potentials
of state-of-the-art (SOTA) object detection models on the problem of facial acne analysis. The best object
detection CNN model achieves the mean absolute error (MAE) of 3.49 on the filtered ACNE04 dataset
proposed in [14]. For the precise meaning of “filtered”, refer to the Section 3.1. The object detection
models own the advantage of high interpretability that those “end-to-end” methods lack. Second, we have
developed a framework of continuous self-monitoring of facial acne severity using the presented object
detection models, which is already in use. Lastly, the trained models are released to public domain via
GitHub.1 The structure of the rest of the paper is sketched as follows. In Section 2, historical methods on
the problem of facial skin conditions analysis are briefly reviewed. Sections 3 and 4 are devoted to the
demonstration of our novel methods and framework and their performances on facial acne analysis and
monitoring. Discussions on the application and limitations of our new models follow in Section 5, where
several future work directions are also presented.

2. Related work

There is substantial interest among researchers dealing with medical image processing in the design

1https://github.com/wenh06/acne_detection/ and https://github.com/wenh06/yolov4_acne_torch.
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of automated acne analysis system. The first attempt specialized in this area can be dated back to [15],
although its resources of study were multi-spectral images. Methods previously explored in this research
field are mainly in two categories: traditional computer vision (CV) segmentation methods [2,3,16,17],
and deep learning methods (in particular CNN models) [4,14].

2.1. Traditional CV methods

Before the breakthrough and the thus following wide adoption of CNN methods, traditional CV
methods had long been the mainstream. Roughly speaking, traditional CV methods generally first
extract candidates of regions of interest that differ typically in color or texture with normal part of skin.
Such regions may include acne, moles, stains, etc. Afterwards, selections are performed among region
candidates via manually extracted features.

Wong et al. [2] developed an iterative stochastic region-merging to segment skin lesions, which
outperformed the SOTA methods, SLS [18], MGVF [19] and LSAC [20], by then. SVM is used in [16]
for the extraction of acne away from other skin pigmentation. Until recently, there are still research
work following such paradigms. [17] used entropy-based filtering and thresholding to determine the
region-of-interest and used discrete wavelet frames to extract acne lesion features for classifying different
types of acne. The possibility of hard-coding the dermatologist criteria for the establishment of a diagnosis
system was explored [3].

2.2. Deep learning regression

In [4], researchers from Microsoft implemented a regression model via performing transfer learning
on a pretrained ResNet152 model. Their model was capable of producing acne severity assessment as
score ranging from 0 to 5 from a selfie image. In order to achieve higher robustness, Zhao et al. [4] took
advantage of some trick of image augmentation, named skin patch rolling. Another group of researchers
from Nankai University developed a hybrid model in [14], which was capable of producing predictions of
both (the distribution of) the number of acne lesions and the corresponding severity at the same time. The
main contribution of [14] was the combination of the task of Label Distribution Learning (LDL) with
the normal classification task. This multitask structure improved performances both on the acne severity
classification problem and on the acne counting problem, as claimed by Wu et al. [14]. The output of
LDL could provide higher credibility than a single end-to-end classification output as well.

2.3. Saliency: An alternative

Saliency analysis is another possibility, although not specially designed for locating lesion regions when
using end-to-end CNN classifiers as those tested in [9,11]. Researchers of [11] performed saliency analysis
for the model they developed via integrated gradients, in which case lesion regions, or rather the spatial
regions of feature maps that their model paid the most attention to when making specific predictions, were
highlighted. Up to our knowledge, Grad-CAM [21], and its variants like Grad-CAM++ [22], are widely
accepted as the SOTA methods for performing saliency analysis for CNN models. Implementations
of Grad-CAM and Grad-CAM++ are straightforward, especially for those sequential models. The
drawbacks of such “attention” analysis are apparent as well. When making wrong predictions, the models
may focus on regions that are not where the lesions lie. Moreover, the “target” layers to draw such
“attention” maps are hard to determine. All these reasons make it an unstable method of saliency analysis
for the task of skin lesion localization.
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Indeed, saliency analysis was the very first trial we made after developing several skin disease classifi-
cation models (5-classes, 17-classes, 22-classes) in an attempt to reproduce and expand results in [9,11].
We selected images from Dermnet (http://www.dermnet.com/) and the dataset SD260 proposed in [23]
and performed transfer learning on a Xception model pretrained on ImageNet [24] provided in keras.2

When applying Grad-CAM or Grad-CAM++ for saliency analysis for our models, we made experiment
using “add_12” and “conv2d_4” as target layers (corr. to feature maps the last block with skip connections
of Xception), but their performances were unstable. As this problem is not the main issue we study in this
paper, we shall not go any further on this topic.

3. Materials and methods

Object detection (also known as object localization) is the most straightforward and perhaps the most
convincing method for acne analysis on facial images. Once the acne lesions are located in the face,
numerical scoring scheme could be applied to make assessments of acne severity. Object detection has
achieved great success in many application areas, for instance in autonomous driving, but its potential
in facial acne analysis seems to have not been fully exploited. Actually, Wu et al. [14] did conduct
experiments on this topic as a comparison, but did not provide much detailed information. This might
owe to the fact that their “joint learning” method rather than object detecting was their choice of method
for facial acne analysis.

The drawback of object detection methods lies in their time efficiency, especially those with heavy
backbone CNN, e.g. those which used ResNet-101 as backbone as listed in Table 9 of [25]. This could be
a serious issue for autonomous driving, but would be of less sensitivity in our scenario.

As it is rare for open-access skin disease image datasets to have bounding box annotations locating
the lesions, which usually only have disease names as annotations, it is particularly remarkable that the
authors of the dataset ACNE04 provided such annotations for each images of their dataset. This greatly
facilitated our study, and we adopted this dataset as the base material for developing and validating our
models.

3.1. Dataset and data cleaning

As is described in the article by Wu et al. [14], the dataset ACNE04 contains 1457 images (indeed
1513 in total in the zip file provided by its authors), along with annotations of bounding boxes and
the number of lesions and severity for each image. The dataset can be found in the GitHub repository
https://github.com/xpwu95/LDL. However, despite the images collected following the requirements
(mainly concerning “half face”) of the Hayashi grading criterion [13], the dataset ACNE04 was con-
taminated by a number of images with very low quality. A small part of the images were taken when
the camera was placed too far away from the volunteers. Facial skin makes up too small areas in these
images, which makes them not suitable for developing our model. Therefore, we excluded all these
images mentioned above, leaving the 1222 high quality images for our training and validation. In order
for more precise localizations of the lesions, we also shrank the original bounding boxes provided by Wu
et al. [14], so that each bounding box enclosed the lesion almost precisely. By doing this, the negative
impact of normal skin (texture, color, etc.) to the detectors were reduced to the least when performing
training. In the rest of this paper, when referring to ACNE04, we would mean this cleaned dataset.

2F. Chollet et al., “Keras”, https://keras.io, 2015.
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3.2. Selection of models of object detection

We performed tests using a range of the existing SOTA object detection methods, mainly general
purposed ones rather than those specially tailored for small object detection models, in order to pick out
one or more usable models. Two families of detectors were selected as candidates: the one-stage single
shot family in consideration of time efficiency and the two-stage Region-based CNN (R-CNN) family in
consideration of the performance of the task of acne detection itself.

Single Shot Multibox Detector (SSD) [26] with MobileNet v1 as backbone (the backbone was VGG-16
in the original paper [26]) was the first detector we tried. As its name implies, SSD uses a single neural
network which produces a collection of bounding boxes at multiple scales and corresponding scores for
the presence of certain objects. Yolov4 [25], the SOTA one-stage detector, was also tested. Yolov4 gathers
many of the recently developed techniques, including newly proposed “mosaic” image augmentation
method, hence is expected to be more powerful. We also tried faster R-CNN [27] with ResNet as backbone
and with Inception-v2 as backbone. Faster R-CNN is an evolved member of the R-CNN family. Detectors
that belong to the R-CNN family have an extra stage of region proposal through Selective Search or
through Region Proposal Networks (RPNs), hence are more time consuming, especially those with heavy
backbones like Inception-ResNet-v2. However, in general they have better performances on the object
detection task itself.

It should be emphasized that since acne lesions are small objects, anchors should better be adjusted, for
example using kmeans proposed in [28].

The main evaluation metrics for the models tested are the commonly used metrics average precision
(AP, the usually used is mean average precision (mAP), but we left out the “mean” as in this study we
had only one class for the acne lesions. The same for AR) and Average Recall (AR), first formalized in
the PASCAL Visual Objects Classes (VOC) challenge [29] measured at Intersection over Union (IoU)
threshold of 0.5 and later extended by the MSCOCO Challenge [30].

4. Experiments

In this section, we will give more details about the experiments we have carried out and make some
comparisons with the original work [14] that first proposed the dataset ACNE04. Particularly, we designed
and conducted two sets of experiments. In one set of experiment, we used only a small part about
400 images, most of which are of low acne severity, to comprise the training and validation sets for
model developing. We aim to check to what extent the acne detectors trained on insufficient data can
be generalized. Detectors trained with this dataset will have a suffix of “small” in the rest of the paper.
In another experiment, we used almost the whole dataset (excluding the several dozen images of acne
severity level 3) to train our acne detector. Detectors trained with this dataset will have a suffix of “large”
in the rest of the paper.

4.1. Training details

Despite the Yolov4 detector which is re-implemented in PyTorch, we base the project on top of the
object detection API [31] provided by Tensorflow [32]. This module provides many implementations
of the SOTA object detection methods, for instance SSD, Faster R-CNN, with various backbone CNNs,
along with pretrained models. On top of these pretrained models, we perform transfer learning using our
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Table 1
Results of average precision for the 6 models

Model3 AP-504

faster_rcnn_resnet101_large 0.536
faster_rcnn_inception_v2_large 0.434
faster_rcnn_resnet101_small 0.472
faster_rcnn_inception_v2_small 0.422
ssd_mobilenet_v1_large 0.166
Yolov4_large 0.526

Table 2
Statistical results of 3 models

Model Score threshold MAE RMSE Mean STD
faster_rcnn_resnet101 0.25 3.49 6.79 −0.16 6.79

0.50 3.50 6.92 −0.37 6.91
0.75 3.55 7.05 −0.58 7.03

faster_rcnn_inception_v2 0.25 3.57 6.69 0.04 6.70
0.50 3.63 7.30 −1.71 7.10
0.75 4.40 8.79 −3.59 8.02

Yolov4 0.25 3.61 6.66 0.43 6.65
0.50 3.65 6.88 −0.02 6.88
0.75 3.77 7.19 −0.45 7.17

dataset. For the second set of experiments, we perform transfer learning on top of the models produced in
the first experiment if applicable.

Since in this study we do not distinguish different subtypes of acne, there is only one class for the
bounding boxes. In each experiment, datasets are randomly split into training and validation set by a ratio
of 7:3.

5. Results

Average precision of SSD is almost constantly zero during training. Hence we treat it a failure of task
and exclude this model from comparison. The 6 detectors thus obtained is compared in Table 1.

The average precision of faster_rcnn_resnet101_large is the highest, which is illustrated in more details
in Fig. 1 and in Table 2 (3 models are selected for comparison). Acne lesion numbers, the essential
ingredient for estimating acne severity in some numerical criterion as in [13], are obtained by counting
the connected components of the acne masks obtained from the predicted bounding boxes in the images,
or just counting the number of boxes after non-maximum suppression. A finer treatment would be further
restricting the bounding boxes to the facial mask or the human skin mask which are obtained via other
models. Figure 2 provides some examples for which detected acne lesion number matches exactly with
the ground truth.

In Table 2, numerical comparisons, via MAE, root mean square error (RMSE), etc., are made using 3
different bounding boxes score thresholds, 0.25, 0.5, and 0.75. One obtains a bias array by subtracting the
predicted acne lesion numbers by the ground truth acne lesion numbers. “Mean” and “STD” are the mean
and standard deviation of this bias array resp. “MAE” is the mean of the absolute bias array. “RMSE” is

3For the suffixes “mall” and “large” of the models, see the first paragraph of Section 4.
4Average Precision @ [IoU = 0.50 | area = all | maxDets = 100].



H. Wen et al. / Acne detection and severity evaluation with interpretable CNN models S149

Fig. 1. Examples for comparison of performances of the detectors. Acne lesions are located with green boxes. Names of the
detectors are under the images, together with the number of acne lesion detected. The ground truth acne lesion number is 17. The
bounding boxes and acne lesion number were drawn with score threshold = 0.5.

Fig. 2. Examples for which detected acne lesion number matches exactly with the ground truth. Acne lesions are located with
green boxes. Detections were using faster_rcnn_resnet101_large with threshold = 0.5.

the square root the the mean of the squared bias array. Among all, faster_rcnn_resnet101_large achieves
the lowest MAE of 3.49. This result is better than other object detection models tested in [14]. Although
it is not as good as that obtained by the LDL model in [14], our model has better interpretability than the
the LDL model.

Considering the problem of regression of acne numbers, a scatter plot of predicted acne numbers against
ground truth numbers is given in Fig. 3a. Confusion matrix thus obtained, in which case we consider the
problem of classification of acne severity, is shown in Fig. 3b. It can be inferred that predictions for low
severity level images are considerably accurate. More detailed numerical evidence is given in Table 3,
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Table 3
Comparison by groups of different severity

faster_rcnn_resnet101_large
Severity Score threshold MAE RMSE Mean STD

Level 0 mild 482 images 0.25 1.26 1.93 0.69 1.80
0.50 1.22 1.88 0.63 1.77
0.75 1.19 1.83 0.58 1.74

Level 1 moderate 578 images 0.25 3.37 4.50 1.31 4.30
0.50 3.32 4.41 1.16 4.26
0.75 3.30 4.36 1.02 4.23

Level 2 severe 132 images 0.25 5.76 7.21 −2.70 6.68
0.50 5.86 7.30 −3.42 6.45
0.75 6.32 7.65 −4.30 6.32

Level 3 very severe 30 images 0.25 31.53 34.64 −31.00 15.45
0.50 32.90 35.84 −32.50 15.10
0.75 33.93 36.71 −33.67 14.62

Fig. 3. The scatter plot of acne lesion number predictions (a) and the confusion matrix of acne severity prediction (b), for the
model faster_rcnn_resnet101_large with score threshold = 0.5. In (a), the dashed magenta line “line fit partial” is obtained using
images excluding the 30 images whose annotated acne severity are “very severe”, while the dash-dot orange line “line fit total” is
obtained using all images in the dataset.

where comparison via similar criteria as in Table 2 is made on groups of different acne severity, using the
model faster_rcnn_resnet101_large with score threshold = 0.5. The only flaw lies in the predictions for
the very severe group.

6. Discussion

6.1. Acne self-monitoring framework

The trained acne detectors can be, and currently have already been, deployed using tensorflow serving
as a freely accessible service via WeChat5 applet. This applet, with acne detector as one of the many

5One of the largest social network platforms in China.
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Fig. 4. Acne detectors are able to provide numerical evidence for the lowering of facial acne severity. Acne lesions are located
with green boxes.

component modules, is capable of producing a broad range of facial skin status estimate upon facial
images. Once a selfie image is uploaded via this applet, it is fed into the tensorflow serving which
hosts many models including the acne detection model. Different prediction tasks run parallel. The
acne bounding boxes are thus obtained, along with a facial skin mask obtained by a model of facial
skin segmentation based on BiSeNet. After filtering by facial skin mask to prevent misdetection in the
background, final prediction is made and provided for higher level attributes calculation of the face and
for front-end display.

This could help the users and perhaps their dermatologists conducting continuous out-of-hospital
self-monitoring of the users’ facial acne states, for example acne lesion number, severity, and moreover
progression of the acne and estimation on therapies in use, etc. Example can be drawn just from the
dataset ACNE04 as in Fig. 4. The 3 images come in a row with consecutive file names in this dataset. The
severity is lowering, with numerical evidence being able to be drawn from the acne detector.

6.2. Limitations

As stated in [14], acne lesions are small in size, hence detectors tailored for small object detection
perhaps might have better performances than general-purposed models on the problem of acne lesion
locating, although shrinking the anchors is a choice but not the best. There were already research work
into the topic of small objects detection, for example [33].

Another possible limitation is that we had only one class for acne. However, acne could further be
classified into 6 or more subtypes6 and even including acne scars. It should be noticed that in [13], the
actual classification of acne severity was performed by counting lesions of papules and pustules, not
all subtypes of acne. Confusion with other facial skin conditions, like rosacea and eczema, and skin
pigmentation is another issue that is not avoidable for developing better facial acne lesion detectors, or
for developing other deep learning analysis systems for facial skin conditions.

6.3. Future work

As stated in the above Subsection 5.2, a direction of our future work can be the development of a
multi-class detector, which not only splits acne into 6 or more subtypes but also takes other facial skin
conditions into consideration. Besides, tailoring the model network structures for more suited ones for
detecting small objects is also a major concern in our future studies.

6Whitehead comedone, blackhead comedone, papule, pustule, nodule, cyst, etc., as in [34].
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7. Conclusion

In this study, we verified the validity of several deep learning object detection models on the problem
of facial acne analysis. According to the results of our experiments, we could conclude that the various
detectors (Yolo, R-CNN family, but excluding the legacy SSD) are capable of relatively precisely locating
out the acne lesions on facial images. Object detection is a promising method for facial acne analysis,
whose potential should be more thoroughly studied.
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