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Abstract.
BACKGROUND: Automated diagnosis of gastrointestinal stromal tumors’ (GISTs) cancerization is an effective way to improve
the clinical diagnostic accuracy and reduce possible risks of biopsy. Although deep convolutional neural networks (DCNNs)
have proven to be very effective in many image classification problems, there is still a lack of studies on endoscopic ultrasound
(EUS) images of GISTs. It remains a substantial challenge mainly due to the data distribution bias of multi-center images, the
significant inter-class similarity and intra-class variation, and the insufficiency of training data.
OBJECTIVE: The study aims to classify GISTs into higher-risk and lower-risk categories.
METHODS: Firstly, a novel multi-scale image normalization block is designed to perform same-size and same-resolution
resizing on the input data in a parallel manner. A dilated mask is used to obtain a more accurate interested region. Then, we
construct a multi-way feature extraction and fusion block to extract distinguishable features. A ResNet-50 model built based on
transfer learning is utilized as a powerful feature extractor for tumors’ textural features. The tumor size features and the patient
demographic features are also extracted respectively. Finally, a robust XGBoost classifier is trained on all features.
RESULTS: Experimental results show that our proposed method achieves the AUC score of 0.844, which is superior to the
clinical diagnosis performance.
CONCLUSIONS: Therefore, the results have provided a solid baseline to encourage further researches in this field.
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1. Introduction

Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal neoplasms with potential
malignancy in the gastrointestinal tract [1]. According to the Fletcher’s criteria, they can be divided
into four categories: the very low risk group, the low risk group, the moderate risk group and the high
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Fig. 1. Example images of four GISTs categories. (a) The very low risk, (b) the low risk, (c) the moderate risk, and (d) the high
risk. The red line indicates tumor contours.

risk group [2]. As the risk level grows, tumor’s recurrence, metastasis and death increase. The surgical
resection is regarded as the main treatment for GISTs [3]. The assessment of the preoperative malignancy
risk plays a pivotal role on determining whether the patient need to receive the preoperative targeted
therapy [4].

GISTs are clinically diagnosed mainly by two methods: the endoscopic ultrasound (EUS) screening
and the biopsy pathology analysis [5–7]. EUS images are extremely sensitive to noises leading to serious
artifact interference which may sometimes adversely affect the accuracy of the clinical diagnosis. It is
extremely demanding to read EUS scans for radiologists and the diagnosis process is prone to the operator
bias. The biopsy pathology is the gold standard for the risk level assessment of GISTs. However, the
biopsy process takes the risk of causing tumor rupture and cancer spread as GISTs are often fragile [8].
Hence, it is meaningful to develop automated GISTs classification methods using EUS images so as to
reduce the risks of biopsy.

In recent years, a great variety of deep learning based medical image classification methods have been
proposed [9,10]. Deep convolutional neural networks (DCNNs) have been demonstrated the remarkable
ability in selecting distinctive features from medical images [11], thus to avoid the complicated feature
extraction of traditional radiomics methods. The training process of DCNNs typically requires a large
volume of training data. Nevertheless, the size of medical image dataset is often limited as medical data
is either hard to collect or annotate. The proposal of transfer learning provides a new solution to this
problem for the reason that shallow-layer features of deep neural networks are shared among images [12].

While extensive deep learning based studies focus on various kinds of medical image classification
tasks, such as skin lesion classification, benign-malignant lung nodule identification and Alzheimer’s
disease diagnosis, there is still a lack of researches on EUS images of GISTs. There are three main causes.
First, these images are gathered by different scanners and vary in the size and spatial resolution, which
makes a great data bias. It limits the performance of DCNNs to learn useful feature representations.
Second, GISTs’ EUS images of four different risk levels have great intra-class variation and inter-class
similarity. Three GISTs of each category are provided as examples in Fig. 1. As illustrated, these images
have different sizes and spatial resolution. Some contain a circle representing the ultrasonic probe in
the image while others do not. Moreover, we can see subtle differences among four groups but big
visual differences among three cases of each group. It is extremely difficult to classify them without
the expertise. Third, the maximum diameter of GISTs can range from millimeters to centimeters, thus
posing a major challenge for extracting the size information and other textural, morphological features
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simultaneously in one DCNN framework because their majority always require a uniform input image
size.

To tackle these problems, an integrated framework is proposed in this paper to classify higher-risk and
lower-risk GISTs in multi-center dataset using multi-scale image normalization and transfer learning. The
framework consists of three parts: a multi-scale image normalization block, a multi-way feature extraction
and fusion block, and a classifier. EUS images are first normalized to the same size and same resolution,
respectively. In order to keep tumors’ edge information and remove the background interference as well,
we extract regions of interest (ROIs) using dilated tumor segmentation masks. Then, tumors’ textural
and morphological features are extracted from same-size images using a transfer learning based CNN
model while the size information is calculated from same-resolution images individually. We also include
two demographic factors (age and sex) in our multi-way feature extraction and fusion block. Finally, an
XGBoost classifier is established to predict the tumor’s risk level using all features.

To the best of our knowledge, this work is one of the first to apply deep learning methods to GISTs
classification tasks on multi-center EUS images. Our main contributions are summarized as follows:

1) To solve the problem of multi-center data bias, we propose an effective multi-scale image normal-
ization method by resizing EUS images to the same size and same resolution separately preparing
for following feature extraction.

2) Considering that GISTs are visually similar among different risk groups, we design a multi-way
feature extraction and fusion module to obtain more distinguishing features. Then, we fuse deep
features extracted from a CNN model with size features of tumors and demographic information
(age and sex) of patients to obtain a more complete feature representation.

3) To address the problem of limited data, transfer learning are used to prevent overfitting on small
training datasets.

2. Method

Our model consists of three parts: the multi-scale image normalization, the multi-way feature extraction
and fusion, and classification. In the first place, the original endoscopic ultrasound scans together with
the segmentation masks of tumors are normalized to the same size and same resolution in parallel.
After preprocessing, a CNN model is built to extract tumors’ textural and morphological features from
same-size images while tumors’ size information is obtained from same-resolution segmentation masks.
The demographic information (age and sex) is also encoded as clinical features. Finally, an XGBoost
classifier is established based on merged features. A schematic diagram of our framework is illustrated in
Fig. 2. We now go into more details of this framework.

2.1. Multi-scale image normalization

As mentioned above, EUS images from different centers vary greatly in the size and spatial resolution.
As a result, tumors with similar physical sizes may look completely different in the image. Therefore, the
image normalization is indispensable.

Traditional normalization methods simply resize all images to the same resolution. Nevertheless, it
is not a good choice for GISTs. Because big tumors can be several times larger than those small ones,
small tumors will be shrunk to only few pixels after resizing. Examples are given in Fig. 3. As shown in
Fig. 3, the texture of the small tumor (the right column) can be observed clearly before resizing, while
after resizing, a majority part of detailed information was lost.
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Fig. 2. The architecture for the proposed framework.

Fig. 3. An illustration of severe information lost for small tumors after resizing all images to the same spatial resolution.
(a) Before resizing and (b) after resizing.

Hence, in order to consider GISTs’ size information and textural information at the same time, we
design a multi-scale image normalization module with two branches executing in parallel. A detailed
architecture of this module is given in Fig. 4.

In one branch, we first extract a ROI in the original image to ensure inputs of the feature extraction
module are tumor areas. Rather than using the corresponding segmentation mask, we dilate the mask
and crop the original image according to the minimum bounding rectangle box of the dilated mask. In
this way, the edge information of tumors can be reserved. This is important because GISTs with obscure
boundaries tend to have the higher relevance with potential malignancy while lower-risk tumors have
more smooth boundaries. After a contrast enhancing step, a same-size resizing operation is performed on
all ROIs while keeping the aspect ratio unchanged. To reduce the possible background interference, we
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Fig. 4. The architecture of our proposed multi-scale image normalization module.

multiply the ROI and the dilated mask to remove background areas. Finally, the ROI is placed on the
center of a black background with a size of 224 × 224.

In another branch, a same-resolution resizing operation is performed on all original segmentation
masks. After resizing, size differences among tumors can be obviously observed. Then, size features can
be extracted in the feature extraction block individually.

2.2. Multi-way feature extraction and fusion

In this section, we extract tumors’ textural and morphological features using the CNN as a deep feature
extractor. Besides, the size features of tumors and the demographic features of patients are also encoded,
respectively. These three kinds of features are then fused to acquire final features.

2.2.1. CNN feature extraction
Due to a limited training dataset, simply training a CNN model from scratch may result in two problems.

On the one hand, deep neural networks are prone to overfitting when only a small dataset is given. On the
other hand, it is comparatively hard for neural networks to learn distinguishing features without enough
data. Hence, we decide to strengthen the feature extraction ability of the CNN via transfer learning.

Transfer learning can be recognized as reusing a pre-trained model on a new target task. In the field of
computer vision, early layers of neural networks are usually responsible for detecting edges and shapes
These general low-level features are shared among all images. For example, the shape and contour of
tumors are very similar to some objects in natural images. Therefore, we can take advantage of pre-trained
weights on big natural image datasets as the starting point for a new task and then refine the model using
data available for the new task.

To utilize the extraordinary feature extraction ability of models learned on large image datasets for
characterizing GISTs, we choose a ResNet-50 [13] model pre-trained on the ImageNet dataset as the
transfer learning backbone. We replace the original last fully connected layer (designed for 1000 classes)
by a new one with only two neurons. To achieve fast adaptation to the GIST classification task, the whole
model is fine-tuned with a different learning rate on the new classification layer and other layers. The
output of the second last layer (the input of the last fully connected layer) is defined as a 2048-dimensional
deep feature.

The extracted ROIs after same-size resizing are used as inputs of the CNN model. Due to the relatively
small training set, the data augmentation is adopted to add variants in the CNN training phase to further
alleviate the overfitting of deep learning models. After the training, the best performed model on the
validation set is selected as the feature extractor. CNN features of all images in the dataset are then
extracted and saved without any augmentation.
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Table 1
Detailed information of the feature vector size

Feature name CNN feature Tumor size feature Demographic feature
Feature size 2048 1 2

The traditional cross-entropy loss with class weighting strategy is applied in our model’s training. Each
class is multiplied by a factor wi which can be described as:

wi =
N

ni
(1)

where N is the total number of training samples and ni is the number of samples in the class i.
The standard cross-entropy loss can be defined as:

L = −
C∑
i=1

pi log p̂i (2)

where p is the ground-truth, p̂ is the softmax-normalized model output and C denotes the number of
classes. In our task, C is specified to 2.

After multiplying by the weighting term, the loss can be expressed as:

L = −
C∑
i=1

wipi log p̂i (3)

2.2.2. Tumor size calculation
Tumors’ segmentation masks with the same resolution are used to calculate their relative sizes. The

area of masks after scaling to (0, 1) can be regarded as tumor size feature representations.

2.2.3. Demographic features
Two demographic features, age and sex, of each patient are also included in our study. To encode the

data as feature vectors, the ages are represented by normalized continuous numerical values while the sex
information is represented by discrete values of one (for male) and zero (for female).

2.3. Classification model

The eXtreme Gradient Boosting (XGBoost [14]) algorithm is used in this study to establish a classifier
at the top of our entire framework. XGBoost is an integrated learning algorithm built on the Gradient
Boosting (GB) to achieve the high classification performance through the iterative computation of weak
classifiers. Here, the input of the XGBoost classifier is a 2051-dimensional feature vector and the output
is the probability that a tumor belongs to the higher-risk group. Detailed information of the feature vector
size is given in Table 1.

Considering that more than one image may be available for one patient, the risk level prediction results
are finally decided on all images’ diagnostic results of a certain patient using a majority voting algorithm.

3. Experiments

3.1. Dataset

The endoscopic ultrasound images of 914 patients (1824 images) were collected from 18 hospitals in



C. Liu et al. / GISTs diagnosis on multi-center EUS images S53

Table 2
The clinical and demographic information of patients in the dataset. (Values are reported as mean ±
standard deviation)

Number of patients Number of images Age (years) Gender (male/female)
Very low 420 870 57.27 ± 9.73 147/273
Low 326 643 58.33 ± 11.11 145/181
Moderate 114 219 59.19 ± 11.59 52/62
High 54 92 56.48 ± 11.97 33/21

Table 3
The details of dataset distribution

The LRG The HRG

Very low Low Moderate High
Training Number of patients 319 248 74 38

Number of images 675 495 152 68
Validation Number of patients 17 13 18 6

Number of images 17 13 18 6
Testing Number of patients 84 65 22 10

Number of images 178 135 49 18

China. Five ultrasound units, Fuji SU9000, Fuji SU8000, Olympus Alpha 10, Olympus EU-ME1 and
Olympus eu-ME2 were used. All subjects had signed the written informed consent for EUS imaging and
data to be donated for scientific research. The demographic and clinical information of all studied patients
are depicted in Table 2. All images were segmented manually by experienced doctors.

Four types of GISTs are all covered in this datasheet. The very low risk level and the low risk level
were divided into the lower-risk group (LRG) while the moderate risk level and the high risk level were
merged as the higher-risk group (HRG). Positive samples (HRG) are five times smaller than negative
samples (LRG). Because all images were obtained in different times and locations with different devices,
there exists a huge difference on the data distribution. Original sizes of all images range from 100 to
1000 pixels around while their spatial resolution differ from 17 to 286 pixels representing one certain
centimeter.

In this study, 679 patients (1390 images in total) were randomly chosen as the training set. A validation
set containing 54 patients with only one image provided for each individual was built so as to choose
the model with the best performance on one single image. Rest patients were separated as the individual
testing set. The detailed information of data partition is shown in Table 3.

3.2. Evaluation metrics

Four evaluation metrics were involved to quantitatively evaluate the model performance: the accuracy
(ACC), the area under the receiver operator curve (AUC), the sensitivity (SENS) and the specificity
(SPEC). The ACC delivers the model’s overall ability in classifying tumors’ risk levels while the SENS
and the SPEC metrics measure the model’s ability to classify higher-risk samples and lower-risk ones,
respectively. The AUC represents the probability that a classifier grades a randomly selected positive
sample higher than a negative one. The detailed definitions are as follows:

ACC =
TP + TN

TP + FN + TN + FP
(4)

AUC =

∫ 1

0
tpr(fpr)dfpr = P (X1 > X0) (5)
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SENS =
TP

TP + FN
(6)

SPEC =
TN

TN + FP
(7)

where TP means the true positive number, FN means the false negative number, TN means the true
negative number and FP means the false positive number. tpr and fpr are the true positive rate and the
false positive rate while X0, X1 are the confidence scores for a negative and positive sample, respectively.

3.3. Experimental settings

Here we elaborate implementation details of our proposed method first and then introduce comparison
experiments.

3.3.1. Implementation details
In the CNN training stage, several kinds of data augmentation strategies were utilized, including the

random crop, the random horizontal or vertical flip and the random rotation. To ensure the completeness
of tumor regions, zero padding was implemented before random cropping. An Adam optimizer was used
and the initial learning rate of the classification layer was set to 0.00005 while that of other layers was set
to one-tenth of it. The learning rate was reduced by half every 10 epochs. The batch size was set to 64.
The maximal fine-tuning epochs was 50.

In the XGBoost classifier, a learning rate of 0.05, a maximum tree depth value of 4 and a maximum
iteration step of 200 were used.

3.3.2. Comparison experiments
In order to prove the superiority of the proposed method, several comparison experiments are designed.
To demonstrate the necessity of the multi-scale image normalization module, two comparison experi-

ments were conducted. Firstly, instead of doing the normalization process, we simply cropped a patch
from the original image using the minimum bounding rectangle of the corresponding segmentation mask.
The cropped patch was padded to a square before resizing to 224 × 224 so as to keep the aspect ratio.
In this way, the final classifier receives a 2050-dimensional feature (a 2048-dimensional CNN feature
and two demographic features) as its inputs In the other experiment, we modified the same-size resizing
branch of the multi-scale image normalization block by using original masks rather than dilated ones to
extract ROIs. The input dimension of the classifier remains same as the proposed method.

To validate the effectiveness of the multi-way feature extraction and fusion module, we compared
the classification performance among three different kinds of input features: only CNN features, CNN
features plus the size feature and CNN features plus the size feature and demographic features (our
proposed method).

To evaluate the effectiveness of transfer learning, we trained a ResNet-50 from scratch as the CNN
feature extractor for the comparison. The initial learning rate was set to 0.001 and halved every 15 epochs.
The maximum training epoch number was set to 100. Considering that in addition to the ResNet-50, the
ResNet-18 [13], the VGGNet-16 [15], the MobileNetV2 [16], the DenseNet-121 [17], the AlexNet [18]
and the Inception-v3 [19] are also six of most frequently-used DCNN models, we also evaluated the
model performance when using different DCNNs as transfer backbones.

Implementation details of comparison experiments maintained same as the proposed method unless
otherwise specified.
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Table 4
Comparison results of different normalization methods

Method ACC AUC SENS SPEC
Without normalization 0.774 0.8 0.563 0.819
Normalization using original masks 0.768 0.829 0.75 0.772
Normalization using dilated masks (the proposed method) 0.796 0.844 0.813 0.792

Fig. 5. The comparison of different ROI extraction methods. (a) Original image, (b) cropping a patch using the original mask,
(c) cropping a patch using the original mask and multiplying with it, and (d) cropping a patch using the dilated mask and
multiplying with it (our proposed method).

4. Results and discussion

In this section, we first present and analyze the results of our proposed method and comparison
experiments. Then, limitations of our method are discussed.

4.1. Impact of multi-scale image normalization

In our proposed method, we design a multi-scale image normalization module for multi-center data. To
demonstrate that the designed block is effective, we did two comparison experiments as mentioned in
3.3.2. Results are depicted in Table 4.

As reported in Table 4, our method with a multi-scale image normalization module outperforms other
two methods. The method without the normalization reports an extremely low SENS indicating that
the model is unable to classify higher-risk GISTs. While after the multi-scale image normalization, the
SENS score has witnessed an increase from 0.563 to 0.75 (with original masks) and 0.813 (with dilated
masks). This is mainly because the size information and textural information of GISTs are considered
simultaneously.

Meanwhile, the further consideration on the edge information of GISTs also improves the model
performance on all four metrics. Two examples of different ROI extraction methods are given in Fig. 5. As
depicted in Fig. 5 directly cropping a patch using the original mask (Fig. 5b) may bring the background
interference when tumors are close to the ultrasonic probe (the right column). Although this problem
can be solved by multiplying the cropped patch with the mask (Fig. 5c), the tumors’ edge information is
discarded at the same time. Therefore, we use a dilated mask to keep the edge information while reducing
the possible interference as well.
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Table 5
Comparison results of methods using different features as classifier’s inputs

Method ACC AUC SENS SPEC
CNN features only 0.768 0.775 0.719 0.779
CNN features + size 0.779 0.838 0.781 0.779
CNN features + size + age/sex (the proposed method) 0.796 0.844 0.813 0.792

Fig. 6. ROC curves of methods using different features as classifier’s inputs.

4.2. Impact of multi-way feature extraction and fusion

A multi-way feature extraction and fusion block is used in this study to extract CNN features, size and
demographic features separately. To prove the advantages of jointly using three kinds of features, we
designed two comparison experiments as stated in 3.3.2. Table 5 lists quantitative results while Fig. 6
plots the corresponding receiver operator curve (ROC).

From Table 5 and Fig. 6, we can observe that both size and demographic information facilitate our model
performance. To be specific, the AUC and SENS scores got a considerable improvement of about 6%
when the size information is added. Furthermore, the proposed method generally outperforms the method
that does not consider demographic factors of patients. It suggests that the demographic information is
helpful to facilitate the classification performance. In a word, the multi-way feature extraction and fusion
block has the superior ability to obtain a more complete feature representation.

4.3. Impact of transfer learning

To prove that transfer learning with ResNet-50 can boost the performance of GISTs classification when
limited data is available, the performance of our proposed method based on a pre-trained ResNet-50 was
compared with a ResNet-50 trained from scratch. We also tested the performance when using different
transfer learning backbones. Quantitative results are given in Table 6.

As reported in Table 6, the performance of transfer learning strategies is much better than training from
scratch in general. Transferring image representation abilities of pre-trained models on large datasets
helps to characterize GISTs and obtain a better feature representation.

When comparing the classification performance among different pre-trained models, the ResNet-50
and ResNet-18 produce best results. This can be credited with residual blocks in ResNet architectures to
capture distinguishing features of input images during the deep backpropagation. As illustrated in Table 6,
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Table 6
Comparison results of different transfer learning strategies

Method Backbone model ACC AUC SENS SPEC
Train from scratch ResNet-50 0.746 0.835 0.719 0.752
Transfer learning VGGNet-16 0.768 0.840 0.781 0.765

MobileNetV2 0.757 0.835 0.750 0.758
DenseNet-121 0.774 0.845 0.750 0.779
AlexNet 0.762 0.828 0.75 0.765
Inception-v3 0.780 0.836 0.750 0.785
ResNet-18 0.774 0.854 0.813 0.765
ResNet-50 (proposed) 0.796 0.844 0.813 0.792

Table 7
The mean and standard deviation of the experimental results

ACC AUC SENS SPEC
Mean 0.809 0.851 0.806 0.809
Standard deviation 0.006 0.010 0.026 0.010

although the ResNet-18 reports a slightly higher AUC value, the ResNet-50 achieves more balanced
results, especially for the SENS and SPEC, so we finally choose the ResNet-50 as the backbone.

4.4. Robustness of the proposed method

To address the selection bias of the limited data, repeated random dataset partition was applied to
evaluate the performance stability and reliability of our proposed method. The process of splitting the
dataset was repeated for another 5 times. The mean and standard deviation of the experimental results
are reported in Table 7. As listed in Table 7, the performance of our model is stable with relatively low
standard deviation on all four metrics. Hence, the robustness of the proposed method under different
dataset partition scenarios can be well demonstrated.

4.5. Comparison with traditional radiomics methods

Besides deep learning based methods, radiomics is another kind of common methodologies in the
medical image classification field. Li et al. [20] designed a traditional radiomics method for GIST
classification task. Despite of the similar model performance the radiomics method relies heavily on
hand-crafted features which is much less effective. What’s more, the specificity of radiomics features
is not studied for a specific disease. Thus, the stability of the predictions is prone to suffer from dataset
selection bias. However, deep learning based methods can automatically extract distinguishable features
of GISTs. Once the model training process is finished, the feature extraction is expected to be fast and
accurate.

4.6. Limitations and future work

Although we have obtained good results, there are still several limitations to be considered in this study.
First, the unbalanced dataset brings a big challenge on the classification task. We will make efforts to
establish a more complete and balanced database in the future. Second, the existing framework utilizes
a CNN model whose weights are transferred from the ImageNet dataset. However, domain differences
between natural images and medical ones may limit the model performance. Studying more effective
transfer learning methods will be included in our later work.
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5. Conclusion

We propose a multi-scale image normalization and transfer learning based framework for HRG-
LRG GIST classification on multi-center endoscopic ultrasound images. The proposed framework
can automatically extract discriminative features from multi-center data without requiring any expert
knowledge for defining features. Especially, it can explicitly incorporate the size information of tumors
and demographic information (age and sex) of patients into the predicting process. Results demonstrate
that our model succeed in distinguishing 32 case HRG tumors from 149 LRG tumors with achieving an
ACC of 0.796, an AUC of 0.844, a SENS of 0.813, and a SPEC of 0.792, which could provide a favorable
reference for the clinical diagnosis.
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