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Abstract.
BACKGROUND: Gait can be affected by diseases such as Parkinson’s disease (PD), which lead to alterations like shuffle gait
or loss of balance. PD diagnosis is based on subjective measures to generate a score using the Unified Parkinson’s Disease
Rating Scale (UPDRS). To improve clinical assessment accuracy, gait analysis can utilise linear and nonlinear methods. A
nonlinear method called the Lyapunov exponent (LE) is being used to identify chaos in dynamic systems. This article presents an
application of LE for diagnosing PD.
OBJECTIVE: The objectives were to use the largest Lyapunov exponents (LaLyEx), sample entropy (SampEn) and root mean
square (RMS) to assess the gait of subjects diagnosed with PD; to verify the applicability of these parameters to distinguish
between people with PD and healthy controls (CO); and to differentiate subjects within the PD group according to the UPDRS
assessment.
METHODS: The subjects were divided into the CO group (n = 12) and the PD group (n = 14). The PD group was also divided
according to the UPDRS score: UPDRS 0 (n = 7) and UPDRS 1 (n = 7). Kinematic data of lower limbs were measured using
inertial measurement units (IMU) and nonlinear parameters (LaLyEx, SampEn and RMS) were calculated.
RESULTS: There were significant differences between the CO and PD groups for RMS, SampEn and the LaLyEx. After
dividing the PD group according to the UPDRS score, there were significant differences in LaLyEx and RMS.
CONCLUSIONS: The selected parameters can be used to distinguish people with PD from CO subjects, and separate people
with PD according to the UPDRS score.
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1. Background

Human movement is a complex process that requires the interoperability of all systems in the human
body. Gait is one of the important functions of the human movement apparatus. When a person’s gait is
disrupted, they experience many difficulties. Gait analysis can help identify human gait disorders and
diagnose or quantify the severity of the diseases or help select appropriate medications or rehabilitation
program.
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202 D. Lukšys and J. Griškevičius / Application of nonlinear analysis for the assessment of gait in patients

Gait can be affected by various injuries and diseases. Each disease affects gait differently, so analysing
gait features is important. Conditions such as Parkinson’s disease (PD) and multiple sclerosis damage
the locomotor system. PD gait is characterised by major motor symptoms such as leg shuffle, instability
at the beginning of gait, shortened stride length and reduced speed. PD is not curable, so the main
task while performing diagnostics is to detect it at an early stage [1]. A proper diagnosis of the disease
would help select the right treatment. Therefore, gait analysis and research on quantitative parameters
in PD diagnostics are performed continuously. PD diagnosis is based on measures derived from visual
observations by neurologists who generate a score using the Unified Parkinson’s Disease Rating Scale
(UPDRS). This scale consists of four parts: first, assess reasoning, behaviour, and mood; second, evaluate
how daily life activities are performed; third, motor task research, which covers 14 areas such as speech,
rest tremor, leg mobility etc.; fourth, examine complications caused by drug treatment [2].

Many tools and methods are used to record gait, such as a video camera systems, inertial measurement
unit (IMU) sensors [3], force plates [4], electromyogram (EMG) [5] and electric goniometers, which
record spatiotemporal parameters. IMUs are widely employed because the sensors are small and portable;
there are three types: accelerometer, gyroscope, and magnetometer.

Gait can be analysed using several methods, both linear and nonlinear. Linear methods usually analyse
spatiotemporal parameters, which determine parameters such as step length, time, joint amplitudes,
rhythm and other kinematic parameters. These parameters and the linear method are used extensively in
clinical practice to diagnose and to monitor neurogenerative diseases [6,7]. Kinematic parameters provide
the necessary information, but kinematics alone does not provide a complete description of movement
without the knowledge of various dynamic parameters [8].

Even though human gait is a cyclic and repetitive movement, there is some degree of variability
expressed in irregular fluctuations over time. Therefore, due to the complexity of gait patterns it can
be considered a chaotic system, and nonlinear methods suitable for chaos analysis can be applied to
its analysis. The methods used for chaos analysis are considered nonlinear, and the recorded gait data
represent a time series. Nonlinear methods applied onto the time series allow obtaining quantitative
measures of motion variability [9]. Methods such as the Hurst exponent and the Lyapunov exponent (LE)
provide useful information about the dynamic system and are used in clinical trials to analyse biological
signals [10].

The human body as a dynamic system in motion possesses a number of active degrees of freedom, and
analysis of one of its variables changing in time via nonlinear analysis allows determining the characteristic
quantities related to degrees of freedom such as the largest Lyapunov exponent (LaLyEx) [11]. LaLyEx
calculation has been mostly applied to study a single joint affected by osteoarthritis [12] and to assess
a person’s balance while standing [13]. Another important application of LE is in the analysis of knee
movement in the sagittal plane [14]. Most of the studies have used LaLyEx for only one joint or segment
or for the more affected side. No research has been performed using LE and LaLyEx on two lower
extremity joints (hip, knee on both sides) and it is desired to evaluate diseases that involve limb motor
action dysfunction with respect to the LaLyEx parameter based on clinical evaluations. LaLyEx was used
analysed young and elderly individuals [15]. Liu et al. [16] used LaLyEx to analyse relationship between
nonlinear dynamic character and individuals standing balance. Nessler et al. [17] used nonlinear time
series analysis to examine the variability of multiple kinematic variable of human locomotion. Gouwanda
et al. [18] used Maximum Lyapunov Exponent to investigate how knee and ankle brace affects a person’s
natural dynamic gait stability. Yang and Wu [13] showed potential of LaLyEx measure the balance control
of human standing.

Several nonlinear parameters have been used in the development of diagnostic systems or for the
quantitative evaluation of movements. Each of the nonlinear parameters can be adapted to a specific
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Table 1
Demographic and clinical characteristics of the subjects

Group Age (mean ± SD) Total UPDRS score (mean ± SD) UPDRS III score n

PD 60.26 ± 11.21 38.17 ± 14.43 26.57 ± 8.45 14
CO 57.83 ± 7.58 NA NA 12
UDPRS 0 63 ± 9.21 43.14 ± 17.46 25.29 ± 8.99 7
UPDRS 1 64.43 ± 7.85 50.83 ± 19.19 35.16 ± 11.46 7

registered signal. Quantitative information about the motion performed can be gathered by nonlinear
parameters such as sample entropy (SampEn) and root mean square (RMS). These quantitative parameters
have been widely used in experimental studies and clinical practice [15,16]; they can be applied to time
series data recorded from various sensors.

Entropy measures the level of regularity of a time series; high values indicate reduction of regularity [17]
and can be interpreted as knowledge about lost information in the time series data. The SampEn algorithm
is sensitive to input parameters such as m (length of the data segment being compared), r (similarity
criterion) and N (length of data) [18]. Entropy calculations have been used to distinguish between old
and young people [19]. One of the applications is the development of an entropy-based system to monitor
PD [20]. Huijben et al. [21] used three-axis acceleration sensors mounted on the lumbar L5 vertebra
of the spine and calculated RMS and SampEn. They estimated that RMS values differ depending on
the walking speed. SampEn has been applied to the frequency analysis of various biological signals
such as electrocardiography (ECG), to detect heart rate [22] and various cardiac pathologies; respiratory
measures, to determine the complexity of respiratory patterns during surgery to assist in the prognosis and
to evaluate the effect of different anaesthetic drugs; electroencephalography (EEG), to detect epilepsy;
gait; and to discriminate among foot types for proper footwear selection [23]. SampEn can be sensitive to
changes in conditions during walking [24].

The main objectives of the study was to use LaLyEx, SampEn and RMS to assess PDimpaired gait; to
verify the applicability of these parameters to separate PD and healthy control (CO) groups from each
other; and to differentiate the subjects within the PD group based on the UPDRS. After verifying these
parameters, they could be included in a clinical decision support system for PD diagnostics.

2. Methods

2.1. Subjects and biomedical experiment setup

Biomechanical data were collected from two groups consisting of patients diagnosed with PD and
healthy control volunteers. The demographic data of the subjects are presented in Table 1. The biomedical
experiment was performed in cooperation with a neurologist in the Santara Clinics, neurology depart-
ment. The inclusion criteria for both groups were: > 18 years of age, does not have a neurological or
other neurodegenerative disease, does not possess injuries that affect movements and can walk without
assistance. The protocol for the biomedical experiment was approved by the local bioethics commission.
Each of the subjects gave their written informed consent before participating. A clinical investigation
according to the UDPRS was performed prior to motion registration. Clinical evaluation was performed
by neurologists according to the UDPRS recommendations.

IMU sensors were used to record the subjects’ gait data (Shimmer Research, Dublin, Ireland) [25].
The sensors were placed on the right and left shank and thigh. Each subject was asked to walk at their
selected comfortable speed and abilities a marked distance of 5 m. The task was repeated three times.



204 D. Lukšys and J. Griškevičius / Application of nonlinear analysis for the assessment of gait in patients

Fig. 1. The calculation algorithm.

Fig. 2. Phase plane for mean cycle.

2.2. Experimental data processing

Raw data were processed using MATLAB software (Mathworks Inc., 2020, USA). Three parameters
were selected for nonlinear analysis of the lower extremity: LaLyEx, SampEn and RMS (Fig. 1).

Phase plane plots are used to characterize the kinematics of the dynamics system and provide a better
understanding of the steady state dynamics (Fig. 2).
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The Madgwick AHRS algorithm was used to determine the orientation of the sensors [26]. Two signals
were selected for data processing, namely acceleration and angular velocity. The pre-processing for each
is described below.

1. Gravity components were removed from the acceleration signal and high-pass filtered with a cut-off
frequency of 1 Hz with a first order Butterworth filter. From this signal, RMS for each segment and
each axis was calculated (all-time series). RMS defined as:

xRMS =

√√√√ 1

N

N∑
n=1

|xn|2 (1)

SampEn was calculated for each joint and each axis separately. The following values were used to
calculate SampEn with parameters m = 2 and r = 0.3 [20]. SampEn defined as

SampEn(m, r,N) = −lnA
m(r)

Bm(r)
(2)

Where m, r and N are the template size (i.e., the length of template vector), tolerance size and the
length of time series, respectively.

2. The angular velocity signal was filtered using a fifth-order low-pass Butterworth filter and a cut-off
frequency of 5 Hz. By having curves of angular velocity of the thigh in the sagittal plane, it is
possible to find characteristic points of gait phases (swing, step, stride, etc.) [27].

3. The next step was the calculation of LaLyEx, which measures exponential divergence between two
trajectories in phase space. The phase space reconstruction defined as:

Xr
1,i = (x1,i, x1,i+τ1 , . . . , x1,i(m1−1)τ1), i = 1, 2, . . . , N − (m1 − 1)τ1, (3)

where N is the time series length, τ1 is the lag and m1 is the embedding dimension for X1.
Phase space reconstruction computes the reconstruction for each time series as

Xr
1,i = (Xr

1,i, X
r
2,i, . . . X

r
s,i), i = 1, 2, . . . , N − (max{m1} − 1)max{τ1}) (4)

where S is number of measurements, and N is the length of the time series.
The two other important parameters required to calculate LaLyEx are τ , the delay, and m1, the
embedding dimension. These parameters must be determine before calculating LaLyEx.
τ phase in space reconstruction is calculated using the average mutual information (AMI)
method [28]. During reconstruction, a time delay is determined by the local minima of AMI.
AMI is defined as:

AMI(T ) =
N∑
i=1

p(xi, xi+T ) log2

[
pxi, xi+T

p(xi)p(xi+T )

]
, (5)

where N is the time-series length and T = 1 is MaxLag.
The embedding dimension phase space reconstruction is calculated by applying the false nearest
neighbour (FNN) algorithm [28]. For a point at dimension d, the point Xr

1 , and its nearest point
Xr∗
i in the reconstructed phase space {Xr

i }, i = 1 : N , are false neighbours if:√
R2
i (d+ 1)−R2

i (d)

R2
i (d)

> Distance Threshold, (6)

where R2
i (d) = ||Xr

i − Xr∗
i ||2 is the distance metric. LaLyEx was calculated using the angular

velocity data of the right, left hip, and knee joint about x axis.
The estimated embedding dimension d is the smallest value that satisfies the condition pfnn <
PercentFalseNeighbors where, pfnn is the ratio of FNN points to total number of points in the
reconstructed phase space.
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Table 2
Significant differences between the PD and CO groups

Parameter Joint and axis PD (mean ± SD) CO (mean ± SD) p

RMS Left hip x-axis 3.725 ± 1.349 3.295 ± 0.881 0.0022
Right knee y-axis 3.228 ± 0.819 3.428 ± 0.885 0.0133
Left knee y-axis 3.326 ± 0.807 3.229 ± 0.716 0.011
Right ankle x-axis 5.588 ± 1.274 3.916 ± 0.974 0.0011
Left ankle x-axis 5.549 ± 1.272 3.586 ± 1.789 0.0033
Left ankle y-axis 8.138 ± 1.955 5.833 ± 3.078 < 0.001

Sample entropy Left hip y-axis 0.615 ± 0.246 0.655 ± 0.089 0.0003
Right knee y-axis 0.466 ± 0.177 0.514 ± 0.087 0.0009
Left knee y-axis 0.483 ± 0.175 0.559 ± 0.078 < 0.001

Large Lyapunov exponent Right hip 0.385 ± 0.117 0.276 ± 0.133 0.0364
Left hip 0.428 ± 0.12 0.35 ± 0.1 0.0438
Right knee 0.283 ± 0.085 0.188 ± 0.134 0.0397
Left knee 0.242 ± 0.07 0.183 ± 0.047 0.0228

Table 3
Significant differences between the UDPRS 0 and UDPRS 1 groups

Parameter Joint and axis UDPRS 0 (mean ± SD) UDPRS 1 (mean ± SD) p

RMS Right ankle x-axis 4.814 ± 1.015 6.361 ± 1.045 0.0158
Right ankle y-axis 6.607 ± 1.831 9.041 ± 1.324 0.0147
Right ankle z-axis 5.901 ± 0.756 7.144 ± 0.835 0.0129

Large Lyapunov exponent Right knee 0.139 ± 0.048 0.238 ± 0.086 0.0208

2.3. Statistical analysis

Separate one-way analysis of variances (ANOVA) were applied to determine a significant difference
in the RMS, SampEn and LaLyEx metrics. This test was used to evaluate the null hypothesis that the
calculation parameters were the same between PD and CO groups, as well as patients with PD classified
according to the UPDRS score. A significant difference was considered when p < 0.05.

3. Results and discussion

Nonlinear analysis parameters were calculated for each subject and statistical analysis was performed.
There were significant differences between the PD and CO groups (Table 2). After dividing the PD group
according to the UPDRS score – 0, normal (no problems), and 1, a slight problem (independent walking
with minor gait impairment – there were) significant differences (Table 3).

RMS, SampEn and LaLyEx were selected for nonlinear gait analysis, which allowed us to distinguish
PD and CO groups as well as to separate subjects with PD according to the UDPRS score.

LaLyEx allowed the study groups to be separated according to the calculated values for two joints
(right and left hip and knee). LaLyEx for an unstable system that has a high amount of divergence will
be positive with a large value (> 0.5) [29]. The values of both groups were positive and the higher
LaLyEx values in the PD group indicate lower stability during gait. From the obtained results, the greatest
instability is in the hip joint. Considering the UPDRS score, there was only a significant difference in the
right knee joint: a higher LaLyEx was obtained in the UPDRS 1 group. Based on the obtained results,
LaLyEx is suited to distinguish between PD and CO groups rather than to separate subjects with PD
according to the UPDRS score. Therefore, this parameter does not allow one to assess the severity of PD.

RMS values between the PD and CO groups were obtained only for the left hip x-axis, the right knee
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y-axis, the left knee y-axis, the right ankle x-axis and the left ankle y-axis. There were higher values in
the PD group, an outcome that underscores gait is more intense than in the CO group. After dividing
the PD group according to the UPDRS score, there was a significant difference between UPDRS 0 and
UPDRS 1 at the right ankle in all axes (x, y and z). There were higher values in the UDPRS 1 group.

There were significant SampEn differences in the sagittal plane of the right and left knee and left hip
joints. The PD group had lower SampEn values, indicating that subjects in this group tend to be more
likely to fall. There were no significant differences when dividing the PD group according to the UPDRS
score. Therefore, it can be concluded that this parameter is more suitable for separating subjects diagnosed
with PD from healthy controls than separating subjects with PD according to the disease rating scale.

4. Conclusions

The selected parameters can be used to distinguish between PD and control groups as well as to
separate subjects with PD according to the assessment of the severity using the UPDRS score. The
selected parameter will be included in the diagnostic system, which will quantify PD motor disorder
based on UPDRS recommendations. The obtained results allow to state that RMS better separates both
PD vs CO and UPDRS 0 and UPDRS 1 groups. SampEN and LaLyEx resulta are more appropriate for
PD and CO groups, than for assessing disease severity based UPDRS. LaLyEx values are higher in the
PD groups than in CO, so this parameter allowed to distinguish PD vs CO groups in the hip and knee
joints. This result suggest that hip and knee joints are more damaged in PD group and have greater chaos
during gait than in the CO group. SampEn lower values in PD group of knee joints predict disorder and a
higher probability of falling in motions. No statically significant differences were found in UPDRS 0 and
UPDRS group indicating that fall prediction when gait rates 0 and 1 is difficult and this parameter is not
appropriate.
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