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Abstract.
BACKGROUND: In genome research, it is particularly important to identify molecular biomarkers or signaling pathways
related to phenotypes. Logistic regression model is a powerful discrimination method that can offer a clear statistical explanation
and obtain the classification probability of classification label information. However, it is unable to fulfill biomarker selection.
OBJECTIVE: The aim of this paper is to give the model efficient gene selection capability.
METHODS: In this paper, we propose a new penalized logsum network-based regularization logistic regression model for gene
selection and cancer classification.
RESULTS: Experimental results on simulated data sets show that our method is effective in the analysis of high-dimensional
data. For a large data set, the proposed method has achieved 89.66% (training) and 90.02% (testing) AUC performances, which
are, on average, 5.17% (training) and 4.49% (testing) better than mainstream methods.
CONCLUSIONS: The proposed method can be considered a promising tool for gene selection and cancer classification of
high-dimensional biological data.
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1. Introduction

Microarray technology is one of the most recent advances in cancer research, and using this method, the
expression levels of thousands of genes can be recorded simultaneously. In genomic analysis, the identifi-
cation of molecular biomarkers or signal pathways associated with phenotypes is a particularly important
issue. Logistic regression is a powerful discrimination method, enables clear statistical interpretation, and
derives classification probability of classification label information.

From a biological point of view, only a few genes are related to the target disease, and most genes
are not involved in cancer classification. Unrelated genes may cause noise and reduce the accuracy of
prediction. In addition, from a machine learning perspective, too many features may cause overfitting and
negatively affect classification performance.
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The regularization method has been widely used when dealing with high-dimensional problems. A
popular regularization method is the absolute shrinkage and selection operator (Lasso) or L1 penalty [1],
which can simultaneously perform feature selection and model construction. L1 penalty extensions,
such as the SCAD penalty [2], which is symmetrical, non-concave, have also been common for many
years. The adaptive Lasso [3] uses dynamic weights to penalize different coefficients. However, in some
cases, L1 type regularization may result in inconsistent feature selection and often introduce extra bias in
parameter estimation into the statistical model [4]. Xu et al. [4] suggested L1/2 regularization, which and
can produce a more accurate solution than the L1 penalty [5–7]. But in the analysis of gene expression
data, L1/2 regularization may not be sparse enough. In theory, L0 regularization produces more sparse and
better solutions [8], but this is an NP problem. Therefore, Candes et al. suggested the logsum penalty [9],
a method that nicely approximates the L0 penalty. The logsum penalty has been successfully applied in
much research in recent years, such as impact force recognition [10], drug discovery [11], etc. However,
the logsum penalty lacks a mechanism to incorporate prior knowledge of genetic biology. Combining
gene expression with the analysis of network knowledge can reduce noise and detect complicating factors
in genomic data analysis of many regression and classification models [12–15].

In short, existing methods show good results in terms of feature selection and model construction, but
they either cannot produce sufficient sparsity or do not use any network interaction knowledge.

In this paper, we investigate the sparse logistic regression model with a logsum network-based (Logsum-
Net) penalty, in particular for gene selection in cancer classification.

The major contributions of this paper are as follows:
1. A new method of gene selection is put forward. The logsum method is an efficient tool for feature

selection; however, this method is recommended from a strictly computational view, and there is no
built-in design that can use a priori biological structure information. Unlike previous research, in
this research, a Logsum-Net regularization that aims to integrate prior biological graph information
is proposed.

2. Beyond several mainstream methods, we have carried out a simulation experiment and experimented
on a breast gene expression data set, and the experimental results show that the method is feasible.
For the breast cancer data set, the AUC of our method is, on average, 5.17% (training) and 4.49%
(testing) better than mainstream methods.

2. The penalized logsum network-based logistic regression model

Suppose that dataset D has n samples D = {(X1, y1), (X2, y2), . . . , (Xn, yn)}, where Xi = (xi1,
xi2, . . . , xip) is the ith sample with p genes and yi is the corresponding dependent variable consisting of
a binary value of either zero or 1. Define a classifier f(x) = ex/(1 + ex), and the logistic regression is
defined as:

P (yi = 1|Xi) = f(X ′iβ) =
exp(X ′iβ)

1 + exp(X ′iβ)
(1)

where β = (β1, . . . , βp) are the estimated variables. We transform Eq. (1) using simple algebra:

l(β) = −
n∑
i=1

{yi log[f(X ′iβ)] + (1− yi) log[1− f(X ′iβ)]} (2)

Equation (2) is easily to overfitted when applied to a problem with high dimensions and low sample
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size. Regularization is a commonly used technique to solve high-dimensional problems, which can be
expressed as:

L(λ, β) = l(β) + P (β), (3)

where P (β) is the regularization or penalty term. A typical penalty is the Lasso (L1) method [1]
which has the form Pλ,Lasso(β) = λ

∑p
j=1 |βj |1, where λ > 0. With the singularity characteristic of L1

regularization, an L1 penalized regression model can force small coefficients to zero. There are various
versions of the L1 penalty, such as elastic net [16], SCAD [2]. However, L1 type regularization has two
drawbacks: it is biased and may not be sparse enough. Xu et al. [4] proposed an L1/2 method of the
form Pλ,L1/2(β) = λ

∑p
j=1 |βj |1/2, which is able to generate more a sparser solution than L1 methods.

However, in the analysis of genomics data, L1/2 regularization may not be sparse enough. Theoretically,
L0 regularization produces better solutions with more sparsity, but this is an NP problem. Therefore,
Candes et al. [9] proposed the logsum penalty, which approximates L0 regularization much better. The
logsum regularization is shown as follows:

Pλ,Logsum(β) = λ

p∑
j=1

log(|βj |+ ε), (4)

where ε > 0 should be set arbitrarily small to make the logsum penalty closely resemble the L0-norm.
However, the logsum penalty is unable to use any prior biological knowledge such as the gene-regulatory
network, as this method was proposed from a purely computational point of view.

There has been much research into network-based penalties. Li and Li [17], Chen et al. [18] and Wang
et al. [19], for example, suggested a Lasso network-based method for the study of gene expression.
However, the result achieved by the Lasso method is not sparse enough for genome data. In this paper,
we propose a logsum network-based (Logsum-Net) method as follows:

Pλ1,λ2,Logsum-net(β) = Pλ1,Logsum(β) + λ2βLβ, (5)

where L is a symmetric Laplace matrix that combines the knowledge of biological network, and the βLβ
term forces a smooth result on the network.

Pλ1,λ2,Logsum-net(β) = Pλ1,Logsum(β) + λ2
∑

16i<k6p;

wik

(
βi√
di
− βk√

dk

)2

, (6)

where wik ∈ [0, 1] depends on whether features i and k are linked or not; di and dk denote the degree
(includes out or in degree) of features i and k; λ1 and λ2 are penalty tuning parameters. The logsum
network-based logistic regression model (Logsum-NL) can be formed as follows:

β̂ = argminβ{l(β) + Pλ1,λ2,Logsum-Net(β)}, (7)

This equation not only ensures sparsity in the solutions and, making them more appropriate for
biological interpretation, but also smooths the regression coefficient of the genes that are connected in the
network.

3. Algorithm

We first proposed a new threshold-based solver of the Logsum-Net penalty. Then, we applied an
efficient coordinate descent algorithm (CDA) [20] to solve the Logsum-NL.
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3.1. Threshold solver of the Logsum-Net penalty

Assuming a linear model with p predictors:

y = x1β1 + x2β2 + . . .+ xpβp,

For simplicity, the predictors and responses are all standardized. A Logsum-Net linear model can be
expressed as:

L(β) =
1

2
||ω̂ − β||2 + Pλ1,λ2,Logsum-Net(β), (8)

where ŷ = Xω̂ and ω̂ = XT y.

Recall that Pλ1,λ2,Logsum-Net(β) = Pλ1,Logsum(β) + λ2
∑

16i<k6p;wik

(
βi√
di
− βk√

dk

)2
, which can be

rewritten as:

Pλ1,λ2,Logsum-Net(β) = Pλ1,Logsum(β) + λ2

p∑
i=1

wij

(
βi√
di
− βj√

dj

)2

(9)

+ λ2
∑

16i<k6p;i,k 6=j
wik

(
βi√
di
− βk√

dk

)2

.

The first partial derivative concerning βj of Eq. (8) is given by:
∂

∂βj
L(β) = βj − ω̂ + λ1

1

βj + ε
+ 2λ2βj − t, (10)

where t = λ2
∑p

i=1
wijβi√
didj

.

By setting Eq. (9) = 0, a threshold-based solver for the jth item in Logsum-Net penalized linear
regression model can be shown as follows:

βj =

{
sign(ω̂j)

c1+
√
c2

2 if c2 > 0
0 if c2 6 0

, (11)

where c1 = ω̂+t−ε−2λ2ε
1+2λ2

, c2 = c21 − 4
(
λ1−ω̂jε−tζ

1+2λ2

)
.

3.2. Algorithm for the Logsum-Net penalized logistic regression model

By the Taylor series method, we can rewrite Eq. (2) as follows:

l(β) ≈ 1

2n

n∑
i=1

(Zi −Xiβ)′Wi(Zi −Xiβ) (12)

whereZi = Xiβ̃+ yi−f(Xiβ̃)

f(Xiβ̃)(1−f(Xiβ̃)
is the estimated response, andWi = f(Xiβ̃)(1−f(Xiβ̃) is the weight

for the estimated response. f(Xiβ̃) = exp(Xiβ̃)/(1+exp(Xiβ̃)) is the evaluated value under the current
parameters. Thus, we can redefine the partial residual for fitting the current β̃ as Ž(j)

i =
∑

k 6=j xikβ̃k and

ωj =
∑n

i=1Wixij(Zi − Ž(j)
i ). The whole algorithm for the Logsum-NL as follows:

Step 1: Set all βj ← 0 (j = 1, 2, . . . , p) and X, y, ε.
m← 0, λ1 and λ2 are chosen by gird search;
Step 2: Calculate Z(m) and W (m) based on the current β(m);
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Step 3: Update each βj(m) and cycle over j = 1, . . . , p

Step 3.1: Calculate Ž(j)
i (m)←

∑
k 6=j xikβk(m), t = λ2

∑p
i=1

wijβi√
didj

.

ωj(m)←
∑n

i=1Wi(m)xij(Zi(m)− Ž(j)
i (m)),

c1 = ωj(m)+t−ε−2λ2ε
1+2λ2

and c2 = c21 − 4
(
λ1−ωj(m)ε−tε

1+2λ2

)
.

Step 3.2: Update βj(m) by Eq. (11);
Step 4: Let m← m+ 1, β(m+ 1)← β(m);
If β(m) dose not convergence, then repeat Steps 2, 3.

4. Results

4.1. Simulation

Here, we have conducted simulation research to measure the gene selection and classify the ability of
the proposed method. Several penalized logistic model technologies are compared in the experiment: the
Lasso method, the L1/2 method, the SCAD method, the elastic net method, and the L1-Net method. We
follow Li’s work [17] to perform a simulation experiment; that is, a graph with 200 different transcription
factors (TFs) is simulated. Ten 10 genes are regulated by a TF, which means the simulated network
consists of 2,200. The dependent variable y is designated as a binary value of zero or 1, and is related to
the first 4 TFs and their target genes.

Two models are suggested in the simulation. In every model, there were 200 instances: 100 training
and 100 for testing.

In the first model, we assumed TF and its target played an activator or repressor role in the outcome
variable:
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In the second model, a TF could be both an activator and repressor at the same time, and the rest setting

is similar to the first model:
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The cross-validation (CV) technique has been widely used in parameter tuning. Here, we use a 10-CV

method [21,22] to identify the optimal tuning parameters for the training set. Genes with zero coefficients
in the predicated model will be considered irrelevant to the predictor variables [23].

To consider the impact of variable correlation on the method more fully, a variable ρ was used to
control the correlation between TF and its target.
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Table 1
Simulation study – gene selection performance

Lasso L1/2 SCAD ElasticNet L1-Net Logsum-NL

ρ P TP P TP P TP P TP P TP P TP
Model 1 0.2 56.3 6.9 54.9 9.3 387.6 25 348.7 18.6 134.7 24.1 104.3 32.2

0.5 76.7 12.4 58.7 17.7 449.7 33.7 377.4 31.2 130.2 24.8 110.9 34.5
0.7 69.3 14.3 71.9 22.3 499.1 41.5 404.9 35.5 165.6 30.8 128.1 40.9

Model 2 0.2 53.7 7.9 47 7.9 366.4 15.2 312.2 17.8 109.4 32.8 94.1 34.7
0.5 60.1 10.2 50.6 12 293.7 27.2 339.9 23.9 136.1 27 121.1 39.1
0.7 61.8 10.5 61.3 10.9 380.7 32.1 372.2 30.4 215.2 36.6 128.2 38.3

Table 2
Simulation study – classification performance

Lasso L1/2 SCAD ElasticNet L1-Net Logsum-NL
ρ Accuracy

Model 1 0.2 85.47% 82.43% 82.10% 84.64% 85.85% 92.93%
0.5 82.43% 80.08% 79.00% 77.38% 80.71% 92.16%
0.7 77.96% 81.33% 78.93% 79.79% 81.44% 91.54%

Model 2 0.2 87.67% 89.60% 88.41% 86.00% 89.21% 95.18%
0.5 84.30% 89.19% 88.33% 87.55% 87.65% 94.36%
0.7 81.34% 85.52% 84.82% 84.09% 86.50% 92.63%

The simulation process was repeated 500 times, and we use P and TP to report the feature selection
ability of this method. P refers to the number of non-zero coefficient genes in the prediction model, and
TP refers to the number of true non-zero coefficient genes in the model. The classification accuracy for
the test set was also calculated, and Tables 1 and 2 summarize the results of each model.

As shown in Table 1, compared to other algorithms, our method is more accurate at identifying real
genes. For example, in Model 1, when ρ = 0.7, the mean TP identified by the Logsum-NL method is
40.9, while the number of true non-zero genes is 44. Our method selects almost entirely true genes. In
addition, our method also performs well in the classification task. As dedicated in Table 2, our method
has higher accuracy than sparse logistic regression models such as Lasso, L1/2, SCAD, elastic net, and
L1-Net.

These results show that this method is a useful tool for classification and feature selection.

4.2. Real data

To further prove the performance of the proposed method, we compared our approach with the other
five regularization methods in an analysis of TCGA breast cancer. This data describes 20,501 genes in
806 different breast cancer samples. We retained only samples with complete information. After that,
85 TNBC and 460 non-TNBC were further divided into two groups: training (n = 327; 51 TNBC, 276
non-TNBC) and testing (n = 218; 34 TNBC, 184 non- TNBC) sets.

An extensive biological interactive network was obtained from BioGrid, which consists of 15,211
nodes (gene or other entities) and 336,119 interactions. A prepared network L with 11,320 genes and
224,458 edges was gained when we were mapping the downloaded network into the gene expression data.

We also added two new methods for performance comparison: SPL-Logsum [11] and HLR [7]. Table 3
shows that the Logsum-NL method gained higher predicting AUC performance than other mainstream
regularization methods.

It can be seen from Table 4 that the genes identified by our Logsum-NL method include the
SplA/Ryanodine Receptor Domain and SOCS Box intron 1 (SPSB 1), which has recently been identified
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Table 3
The results for breast cancer

Method # selected genes Training AUC (10-CV) Testing AUC
Lasso [1] 66 81.56% 86.83%
L1/2 [6] 50 80.82% 85.28%
SCAD [2] 54 87.67% 79.94%
ElasticNet [16] 82 80.04% 82.61%
L1-Net [24] 133 86.97% 88.45%
HLR [7] 86 87.13% 86.90%
SPL-Logsum [11] 79 87.26% 88.71%
Logsum-NL 91 89.66% 90.02%

Table 4
The top ten ranked genes

Rank Lasso L1/2 SCAD ElasticNet L1-Net HLR SPL-Logsum Logsum-NL
1 MYOM2 CALCA TMEM63B AKAP14 ATP1A2 CA12 ATP1A2 ESR1
2 HOXB9 FETUB WFDC1 APCS GGA1 FHOD1 ABCA8 SPSB1
3 DCBLD1 GABRB1 DAPK3 C15orf41 KCNA2 ETV4 MYOM2 DAPK3
4 PGBD5 PNMAL2 SLC25A1 GABRB1 GABRD DAPK3 FNBP1 RTEL1
5 MYOM2 TM4SF4 OVOL1 KCNA2 GBE1 LHFP GATA3 TM4SF4
6 GABRB1 PPP2R2D SLC27A4 ATP1A2 UPK3A GATA1 TM4SF4 EPHA8
7 APCS ADAMTS6 MIF GABRD HEYL DAPK3 CANT1 GBE1
8 USP9Y KCNA2 OPN4 DCBLD1 CPNE6 UPK3A FOXO1 PCDH10
9 HSP90AA1 ATP1A2 GADD45B KIF15 GUCY1A2 ADAMTS6 GBE1 ATP1A2
10 KCNA2 FHOD1 OLIG1 HOXB9 TAF9B SDC1 ABI3BP LY6H

as spontaneously regulated during breast tumor recurrence, and necessary and sufficient for promoting
tumor recurrence [25]. The estrogen receptor (ESR 1) is one of the important markers for the classification
of breast cancer subtypes in clinics, which can be used to not only guide prognosis but also decide
treatment [26]. In breast tumors, protoprotein 10 (PCDH10) is down-regulated and methylated exces-
sively [27]. The lymphocyte antigen 6 family member H (LY6H) is a cancer biomarker and therapeutic
target that induces invasion and metastasis. LY6H is involved in the development of breast cancer by
affecting the cellular pathway Ras/ERK. This gene may be a new marker for diagnosis and gene therapy
in breast cancer patients [28].

5. Discussion and conclusions

The logsum method is a powerful method for feature selection. However, it is unable to use any previous
biological structure information. To overcome this drawback, in this paper we first propose Logsum-Net
regularization to integrate biological network knowledge. Then, we suggest the penalized logsum-net
regularization logistic regression model (logsum-NL) for gene selection and cancer classification. For
a real large dataset, the proposed method has achieved 89.66% (training) and 90.02% (testing) AUC
performance which are, on average, 5.17% (training) and 4.49% (testing) better than mainstream methods.
Therefore, the proposed logsum-NL method is a promising tool for gene selection and cancer classification
of high-dimensional biological data. The limitation of this article is that it does not include an in-depth
analysis of the selected genes. Future directions for research include further analysis of the potential
clinical application of the selected genes, and investigation of the method with other high-dimensional
data/models.
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