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Abstract.
BACKGROUND: Biomedical engineers in particular require fast and powerful data processing systems to process computerized
tomography and magnetic resonance imaging scans and other medical imaging technologies. However, current computer data
processing technologies are unable to satisfy such requirements. A promising approach to addressing these limitations is
processing in memory (PIM). Unfortunately, several issues, such as the compatibility and interconnection of PIM with legacy
systems, still remain.
OBJECTIVE: This paper proposes a standard memory bus-based PIM interface for medical image processing and a PIM
platform. The proposed PIM interface can overcome problems of compatibility with legacy systems.
METHODS: We will adapt an embedded system based on a commercial application processor (AP) to a medical image system
to verify the functions and the performance of the proposed PIM interface. Using the PIM platform, we apply the proposed PIM
interface and the AP to execute an image processing program, measure the image processing times, and compare the results of
the measurements.
RESULTS: Experimental results show that while the functions of the proposed PIM interface are normal, the processing time of
PIM is more than 81% faster than that of the AP.
CONCLUSION: The experimental results prove that the proposed PIM interface is able to solve problems of compatibility
with legacy systems. We foresee that not only the medical image processing field but also a number of academic fields and
professional sectors will use PIM in their data-intensive applications.
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1. Introduction

Over the last few years, the volume of data has exploded [1]. The flood of information is the result of
individuals accessing a number of social network services to search for high-quality multimedia content,
companies accessing innumerable complex data related to potential customers to build their business [2],
and many fields such as the public media, the medical industry, the natural and social sciences, the
humanities, and engineering using such data to predict and understand various social phenomena [3].
Therefore, application providers must be capable of delivering timely information to their clients from the
steady stream of a massive amount of data that accumulate every second of every day [4]. Unfortunately,
traditional computing systems are incapable of delivering sufficient computing power to accomplish
this task because of the memory wall crisis. The medical industry is particularly impacted because it
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Fig. 1. Basic concept of 3D-IC technology-based processing in memory (PIM).

incorporates the latest computer engineering technology. As a promising approach to overcoming the
performance limitations of traditional computing systems, the research community has explored the
datacentric computing paradigm [5], specifically, processing in memory (PIM), for use in future computer
systems. PIM uses three-dimensional integrated circuit (3D-IC) technologies such as through-silicon
vias and fan-out wafer level packaging (FOWLP) [6–8] to facilitate the stacking of processing logic and
memory dies in a single package. It also minimizes data movement by placing the computation close to
where the data reside. If existing medical image systems adopt 3D-IC-based PIM, their performance will
dramatically improve. Figure 1 illustrates the concept of PIM.

To date, however, PIM has not yet been realized, for it is unable to address critical issues regarding
interconnection and compatibility [5]. In particular, the use of PIM within traditional computer systems
requires the establishment of standards related to the interconnection between a host-processor and a PIM
subsystem and associated management methods. The existence of established standards could encourage
compliance with such standards by the global computer industry. Thus, the purpose of this paper is
to address limitations related to the interconnection between PIM and existing computer systems by
proposing a standard memory bus-based PIM interface. The paper is organized as follows. Section 2
introduces the motivation of this paper, and Section 3 defines the concept of the proposed PIM interface.
Section 4 describes the experimental environment and validates the performance of the proposed interface-
based PIM system by comparing the results of experiments and Section 5 concludes the paper.

2. Motivation

To commercialize new computer architectures, we must solve issues of compatibility with legacy
systems. PIM is no exception. In terms of the operating system (OS) and computer organization, PIM
has several critical limitations related to its integration with existing computer systems. Such limitations
include the memory hierarchy, virtual memory, demand paging, and memory interface standards [5,9].
As the design of PIM, which is a memory, uses dynamic random-access memory (DRAM), it can be
employed as the main memory or the external memory. If PIM is used as the main memory in a traditional
computer system, typical memory functions such as read and write operations work well, but special
functions, that is, arithmetical, conditional, and accelerable operations, may not operate normally. Because
of the virtual memory policy of the OS, PIM will distort addresses resulting from the demand paging of
the OS and caches in the memory hierarchy, and the unpredicted exact physical addresses of the operands
of the special functions [10,11]. Furthermore, to support PIM operations and to use the special functions
of PIM, the interface must be capable of carrying opcodes and operands. Since existing standard-based
DRAM interfaces, however, were designed for only basic memory operations, they are not suitable for
PIM [12].
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Fig. 2. Write timing of PSRAM [13].

One objective of this paper is to study the memory interface of PIM. While most standard DRAM has a
fixed latency bus protocol [12], PIM requires a variable latency bus protocol because it has to support
various operations whose processing times differ. Therefore, this paper proposes a new memory interface
for PIM, the design of which is based on pseudo-static, random-access memory (PSRAM) [13], the
standard DRAM interface, and communicated by a variable-latency-based protocol. We use an embedded
system-based PIM platform to conduct experiments on the proposed PIM and then evaluate and verify
the functions and performance of the PIM interface in various PIM operations and image processing
applications.

3. Proposed PIM interface

This section explains the proposed PIM interface, summarizes the PSRAM, and describes the modified
PSRAM protocol for PIM and its hardware architecture with additional functionality.

3.1. PSRAM

PSRAM is a type of DRAM with circuits for self-refresh and address-decode. Therefore, with regard
to the memory controller, PSRAM is controlled in the same way as a static random-access memory
(SRAM). Unlike most SRAM, however, PSRAM has a WAIT signal. The refresh of typical DRAMs
is operated by the memory controller, but since PSRAM has a built-in refresh logic, the response time
of PSRAM is changeable. Thus, the WAIT signal informs what is dealing with a required address and
command for the memory controller. Figures 2 and 3 illustrate the basic read and write operations of
PSRAM.

The control signals of PSRAM are CLK, ADDRESS, ADV#, CE#, OE#, WE#, WAIT, and DQ, shown
in Fig. 2. The ADV# indicates that a value of the ADDRESS is valid. The CE is used as a chip select
signal. Since the data bus of PSRAM is bi-directional, the OE# expresses the present direction of the data
bus. The WE# indicates that a present request is either read or write, and the WE# and the ADV# are
asserted at the same time. As the PSRAM protocol is based on variable latency, the WAIT signal indicates
the status of the data bus according to the WE#. Because the WE# is the write mode in Fig. 2, WAIT
is asserted when the data bus is able to receive the write data. The DQ, the data bus shown in Fig. 2,



S490 Y.-K. Kim et al. / Using a PIM interface for improving computer medical image processing abilities

Fig. 3. Read timing of PSRAM [13].

Fig. 4. Packet format of PIM operations.

illustrates the 4-beat burst transfer and write mode. Figure 3 displays the read timing of PSRAM, which is
nearly identical to the write timing shown in Fig. 2. As the PSRAM mode in the figure is read, however,
WE# is deasserted when the ADV# is asserted. The OE# is contrary to the write mode of PSRAM.

3.2. Proposed protocol for PIM

As the processing logic in PIM works according to a read-modify-write scheme (except for basic
memory operations), most PIM operations must be atomic [9]. For atomic operations, a packet format
of the PIM operation requires various fields such as an opcode, destination and source addresses, and
immediate data. Thus, this paper proposes a format of the PIM operation and a method for transferring
the PIM operation based on the PSRAM interface. Figure 4 illustrates the format of the proposed
PIM-operations.

The proposed PIM packet consists of an opcode, a destination address, a source address, and immediate
data fields. The opcode field indicates an instruction processed by the processing logic. In basic memory
operations, the destination address field is used for read and write addresses. The destination address field,
however, can also be used for writing the results of PIM operations. If the instruction in the opcode field
is an immediate type, the processing logic uses the value of the immediate field in the PIM packet as the
operand for processing an instruction; but if the instruction is a recall type, the processing logic uses the
operand loaded from the address of the source address field in the PIM packet. To transfer PIM operations
through the PSRAM interface, we separate the destination address field from one PIM packet, shown
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Fig. 5. Proposed PIM interface and protocol.

Fig. 6. Block diagram of the PIM platform.

in Fig. 4. Since the address bus and the data bus of the PSRAM interface are divided, we employ the
address bus of the PSRAM interface to transfer destination addresses without modification. To transfer
the opcode, the source address, and immediate data, we use the transfer mode of the data bus in the
PSRAM interface. Under the assumption that the PIM packet has a fixed length, we omit the packet head
and tail fields even though they do not have to be omitted. Figure 5 shows the timing of the proposed PIM
interface and protocol.

4. Experiments

This section describes the experimental environment and then reports and evaluates the experimental
results and performance of the proposed PIM interface.

4.1. Experimental environment

To verify the functions and the performance of the PIM interface, we designed an embedded system-
based PIM platform that will specifically adapt to medical imaging systems. Figure 6 illustrates a block
diagram of the PIM platform. The PIM platform board consists of two parts: a PIM prototype and a base
board. The former is a prototype of the 3D-IC-based PIM chip. The FPGA [14] and the SDRAM [15] in
the PIM prototype are employed as the processing logic and the DRAM macro in PIM, respectively. A
32-bit commercial application processor (AP) [16] is used as the host processor of the PIM platform. The
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Table 1
Opcode list of the proposed PIM platform. The Opcode and the Symbol in the
headings of the table represent opcode values in PIM-operations supported by the
PIM-platform and their symbols, respectively, which symbolize the atomic operations
of each PIM operation

Symbol Opcode Description
WRITE 6’b00_1111 Read
READ 6’b01_0000 Write
W_OR_I 6’b01_0001 I-type OR and write
W_NOR_I 6’b01_0010 I-type NOR and write
W_XOR_I 6’b01_0011 I-type XOR and write
W_AND_I 6’b01_0100 I-type AND and write
W_NAND_I 6’b01_0101 I-type NAND and write
W_ADD_I 6’b01_0110 I-type ADD and write
CAWGT_I 6’b01_0111 Compare and I-type write if greater than
CAWLT_I 6’b01_1000 Compare and I-type write if less than
CAWEQ_I 6’b01_1001 Compare and I-type write if equal
CAWZERO_I 6’b01_1010 Compare and I-type write if zero
W_OR 6’b10_0001 R-type OR and write
W_NOR 6’b10_0010 R-type NOR and write
W_XOR 6’b10_0011 R-type XOR and write
W_AND 6’b10_0100 R-type AND and write
W_NAND 6’b10_0101 R-type NAND and write
W_ADD 6’b10_0110 R-type ADD and write
SORT 6’b10_0000 25-pixel window median-sort and write
CONS_SORT 6’b10_0001 Median-sort after 25-pixel window shift and write

AP has an external memory channel, referred to as the “external interface module” (EIM). We implement
the PIM interface by modifying the PSRAM protocol on the EIM. The bus speed of the EIM in the AP
supports a maximum bus speed of 133 MHz, but since we must verify the compatibility with legacy
systems and the functions of the proposed PIM interface, we set the EIM bus in the PIM platform at a bus
speed of 33.33 MHz.

This study entails the use of 32-MB SDRAM as the internal memory of PIM, and the data bus of
the PIM interface in the platform has a 16-bit wide 4-beat burst transfer. Thus, the PIM platform has
a destination address of 26 bits and a packet length of 64 bits, a 6-bit opcode, a 26-bit source address,
and a 32-bit immediate data packet. Figure 7 shows that the PIM packet is communicated between the
PIM prototype and the AP. Because the number of PIM opcodes supported in this paper is limited by
hardware resources and the response time, the design of the processing logic allows the processing of
simple operations. The opcode list appears in Table 1. The OS in the proposed PIM platform uses a 32-bit
embedded Linux.

4.2. Experimental results

To verify the proposed PIM interface and operations in the proposed PIM, we developed test applications
based on MARCH pattern tests on the MARCH algorithm [17]. Furthermore, recent research [18–20]
related to PIM has reported the suitability of data-intensive applications for PIM such as image processing,
artificial intelligence, and graph algorithms. Therefore, we implemented median-filtering processed by
the AP and the proposed PIM for data-intensive applications. We processed the MARCH algorithm
test-based applications as shown in Fig. 8 and generated the destination and source operands as well as
the number of PIM entries. Then each PIM operation in Table 1 was executed by the AP and the proposed
PIM. To verify the functions of the proposed PIM interface and PIM, we compared their results. During
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Fig. 7. Protocol of the proposed PIM interface in the PIM platform.

Fig. 8. Flowchart of test operations based on the pattern tests from the MARCH algorithm.

the experiments, problems of compatibility with legacy systems did not occur, so we confirmed that all
functions in the proposed PIM and the interface were normal.

To verify the function and the performance of the proposed PIM, we developed two application
programs based on the embedded system with the AP: the median-filter algorithm, executed by only the
AP and the same algorithm executed by only the proposed PIM. Each program used its own hardware
resources to process one standard-processing image and two medical images, both of which were 24-bit
color images with a resolution of 512 by 512 pixels.

To evaluate the performance of the PIM interface, this paper executed the median-filter programs on
the embedded system-based PIM platform board and used the functions of window API to measure the
processing times of each program [21,22]. Since the median-filter processing procedures of the AP and
the proposed PIM differ in a number of ways, the methods of measurement of the processing times of the
programs also differ and are diagrammed in Fig. 9.

In the case of the AP, the processing time measurement must begin when the test image from the flash
memory is loaded into the main memory of the system and end when the resulting image and report files
for evaluation are written to the flash memory after median filtering is complete. In the case of PIM,
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Table 2
Comparison of the processing times of median filtering
by the AP and the PIM. The images denote the subjects
of the experiments in this paper. The AP and the PIM
symbolize the processing times for median filtering by the
AP and the PIM, respectively. The reduction ratios denote
the processing times in the PIM resulting from comparisons
of the three images from the experiments conducted in this
study

Image AP (sec.) PIM (sec.) Reduction ratio (%)
Lena 8.004326 1.288066 83.91
Cancer 6.719369 1.245627 81.46
Skin 7.862324 1.287875 83.62

Fig. 9. Flowcharts for measuring the performance of the AP and the proposed PIM.

the processing time measurement must begin when the test image from the flash memory is loaded into
PIM and end when the resulting image and report files for evaluation are written to PIM after the median
filtering is complete. Since a DDR3 is used as the main memory in the PIM platform, and its access time
differs from that of the PIM, employing these measuring methods assured the reliability and fairness of
the experimental results in this paper.

The processing results are displayed in Fig. 10. The experiments in this paper used a woman, Lena,
cancer, and skin as source images for the median filtering process [23–25]. Lena is a standard test image
in the field of image processing; the cancer image is provided by the Digital Slide Archive, a software
platform for cancer research; and the skin image, which shows pigmented skin lesion, comes from
HAM10000. In the resulting images processed by the AP and PIM, the edges resulting from median
filtering are smoother than those of the source images. In addition, since the resulting images of median
filtering by the AP match those by the PIM, we confirm that the operations performed by the proposed
PIM interface and PIM functioned normally.

Table 2 compares the median-filter processing times of the AP and the proposed PIM. To create the
images of Lena, cancer, and the skin, the processing times of the AP were 8.004326 secs, 6.719369 secs,
and 7.862624 secs, respectively, and those of PIM were 1.288066 secs, 1.245627 secs, and 1.287875
secs, respectively. The processing times of PIM were almost the same, but the results of the AP differ,
the reason being that the AP and PIM must repeatedly process a sorting algorithm for processing the
median filter [26]. To do so, PIM uses a hardware-sorting module, so the comparators in the sorting
module have uniform latency regardless of the results of comparison. The sorting algorithm of the AP,
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Fig. 10. Image processing results of the test programs of the AP and the proposed PIM.

however, is processed by software, and the sorting time is affected by the results of the comparison of
the features of the test images. Therefore, the sorting time of the AP is not uniform, and the results
of the AP in Table 2 vary widely, showing that the processing time of PIM is more than 81% faster
than that of the AP. The explanation for this finding is that most of the median filtering of the PIM was
processed by hardware-based processing logic and the internal SDRAM. As a result, the internal memory
in the PIM reduced the memory-transaction overhead for accessing pixel data, so the processing logic
in the PIM accelerated the median filtering process. We repeated the experiments 100 times. Thus, to
mitigate interruptions by the background processes of the OS, we averaged the results from the repeated
experiments to determine the overall experimental results.

5. Conclusion

In an effort to design a more efficient data-centric computing paradigm, this paper proposed a PIM
interface and protocol by modifying the PSRAM interface and overcame problems of compatibility with
legacy systems. To verify the function and the performance of the proposed interface-based PIM, we
suggested an embedded system-based PIM platform. In addition, we developed application programs
based on the embedded system to evaluate and compare the functions of and performance gaps between a
commercial AP and the proposed PIM. Results of the experiments showed that although the images pro-
cessed by the PIM and the AP were identical, the processing time of the proposed PIM was considerably
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faster than that of the AP. Although we employed only one application in experiments, we found that
the median-filter algorithm, a data-intensive application, was effective for evaluating the proposed PIM.
Once this research shows progress, we will explore and develop various applications, particularly those
focusing on medical imaging systems, in a future project. Since medical imaging systems belong to a
category of traditional computing systems, they are strongly impacted by the memory wall crisis, which
limits their efficacy. We foresee that not only the medical image processing field but also a number of
academic fields and professional sectors will use PIM in their data-intensive applications.
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