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Abstract.
BACKGROUND: The aircraft cockpit is a highly intensive human-computer interaction system, and its design directly affects
flight safety.
OBJECTIVE: To optimize the display interface design in complex flight tasks, the present study aimed to propose a dynamic
conceptual framework and a timeline task analysis method for the quantization of the dynamic time effect of mental workload
and the influencing factors of task types in the mental workload prediction model.
METHODS: The multi-factor mental workload prediction model based on attention resource allocation was integrated to
establish the dynamic prediction model of mental workload. The ergonomics simulation experiment was carried out by recording
the data on the performance of embedded subtasks, National Aeronautics and Space Administration-Task Load Index (NASA-
TLX) subjective evaluation, and eye tracking.
RESULTS: The results indicated that the prediction model had a good prediction accuracy and effectiveness under different
simulated interfaces and complex tasks, and the real-time monitoring of pilots’ mental workload state was realized.
CONCLUSION: In conclusion, the prediction model and the experimental method could be applied to avoid the overload of the
pilot throughout the flight phase by optimizing the display interface and adjusting the flight task.
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1. Introduction

Pilots often need to process large amounts of information in a relatively short time and make quick
response decisions to deal with possible urgent airspace situations [1,2]. Moray et al. proposed that
rationally optimizing the operator’s mental workload distribution could effectively reduce human error
and improve system reliability and operator comfort [3,4]. Therefore, the study of pilots’ mental workload
prediction can maximally prevent flight accidents by effectively adjusting the flight task and the pilots’
mental state in time [5,6].

At present, the quantitative modeling research of mental workload is still in its infancy [7,8]. First,
most models are descriptive [9,10], and the quantitative modeling of mental workload is mostly based
on post-mortem measurement of mental workload [11,12]. Second, still many imperfections exist in
the quantitative prediction of mental workload. Bin and Salvendy [13,14] proposed a dynamic time
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conceptual model for mental workload prediction, including instantaneous mental workload (IMW),
average mental workload (AMW), cumulative mental workload (CMW), maximum mental workload,
and total mental workload (TMW), independent of a particular field of mission scenario. Laughery et
al. [15,16] conducted a task analysis method to calculate mental workload by decomposing complex
tasks into multiple simple behavioral elements and connecting the elements hierarchically and logically.
However, the massive task was difficult to analyze in detail. According to the single-channel theory, Siegel
and Wolf [3] introduced the timeline analysis and prediction (TLAP) method in which the time workload
equaled time required/time available (TR/TA). However, these models do not consider the influencing
factors of mental workload in the aviation field, nor do they take into account the impact of different task
types on mental workload. Xiao et al. [17] comprehensively adopted factors such as information amount,
time pressure, visual coding, and attention resource allocation to establish a multi-factor mental workload
prediction model. However, the model does not consider the conflicts within task types and dynamic time
effect.

Considering the aforementioned problems, the present study aimed to optimize the display interface
design under different flight tasks. On account of the dynamic concept of mental workload, the timeline
task analysis method was used to decompose complex tasks into several task units and simple behaviors
that changed dynamically with time and employed the McCracken-Aldrich scale [5] to divide and assign
each simple behavior. A dynamic prediction model of mental workload based on timeline analysis was
established according to the mental workload prediction based on attentional resource allocation and
information processing [17]. The model was verified by carrying out an ergonomic experiment on the
civil cockpit simulator. A correlation analysis was promoted between model prediction and experimental
results, concerning comprehensive metrics including the performance of embedded subtasks, National
Aeronautics and Space Administration-Task Load Index (NASA-TLX) subjective evaluation, eye tracking,
and other technical indicators. The significant main effects and correlations indicated that the model has a
good validity and availability for different interfaces and complex tasks with dynamic time variation.

2. Model development

2.1. Timeline task analysis

In practice, tasks, especially high-mobility military tasks, are complex and usually consist of one or
more simple tasks [1]. Meanwhile, the flight information required by the pilot is different under different
flight phases. As a result, to accurately determine the mental workload state of the pilot over time, the
timeline analysis method is used to decompose the complex tasks and derive the time-variant basic task
units and the time attributes of each task unit, including start time t1j , end time t2j , and duration ∆tj
(where j refers to the j-th task unit).

2.2. Task type correlation coefficient solution

Since different task types have different effects on mental workload, they need to be quantified according
to the internal cognitive mechanism of task types [18]. Each task unit contains one or several specific
behaviors [15]. The behavior of task segmentation is executed by different parts and actions of the
operator [16]. The McCracken-Aldrich Mental Stress Assessment Scale [5] divides behaviors into four
channels: visual, auditory, cognitive, and motor. Each channel is further subdivided into different scales
of complexity. According to the multi-resource theory [3], behaviors that are not in the same channel can
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be executed simultaneously. The task type workload value kqj of the q-th decomposition behavior can be
quantified. Then, the task type workload value kj is the summary value of Q decomposed behaviors of
the j-th task unit.

kj = k1j + k2j + . . .+ kQj =

Q∑
q=1

kqj (1)

The task type workload value calculated using the McCracken-Aldrich scale is considered to be overly
heavy if more than 8 [5]. Therefore, the task type correlation coefficient K l

j of a task unit is calculated
as follows, where m is the total number of task units decomposed by the l-th task. When K l

j = 1, the
mental workload caused by the l-th task is considered overwhelmingly high.

K l
j = kj/8 =

1

8

Q∑
q=1

kqj , j = 1, 2, . . . ,m (2)

2.3. Multi-factor mental workload prediction

The multi-factor mental workload prediction based on attention resource allocation [17] is triggered by
two decisive factors: external task demand and internal resource allocation of mental workload, integrating
the information amount Hi, time pressure Ti, visual coding Ci, and attention resource allocation fi.

The average amount of information Hi of different information appearing over time is calculated as
follows, wherein the information occurrence probability of the i-th areas of interest (AOI) Pi represents a
coefficient related to the information number and information value.

Hi = Pi [log2(1/Pi)] (3)

During the information perception, the attentional allocation factor fi is used to indicate the intrinsic
mental resources that the operator needs to consume due to the information of a certain AOI. The attention
resource occupied by n AOIs is A; then fi is the ratio of the attention resource to the total attention
resource for the i-th AOI.

A = (A1, A2, . . . , Ai, . . . An) (4)

fi = nAi

/
n∑

i=1

Ai (5)

After the information is captured by the visual system and transmitted to the mental procession by
the nervous system, the attention resources allocated to the i-th AOI are as follows, where each of these
information has a certain probability βi of being noticed in one gaze. Information prominence Si is
quantified by the applicability of the highlighted format. Ei indicates the effort that the vision system
needs to pay to acquire the i-th AOI, and Vi is the information importance attribute associated with the
assignment task.

Ai = βiViSiE
−1
i (6)

Ci [17] is the visual coding comprehensive performance eigenvalue, with 0 < Ci < 0.1. wj
i is the weight

coefficient corresponding to the j-th visual coding in the i-th AOI, which is obtained by the G1 method
through expert evaluation. vji is the comprehensive performance eigenvalue of the j-th visual coding
obtained by meta-analysis, and � is the fuzzy weighted average operator.
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Ci = 0.001

n∑
j=1

wj
i � vji (7)

Related experimental results [2,5,17] show that the influence of visual coding on mental workload is
less significant than that of information amount and time pressure. Therefore, the square root of visual
coding is applied as the coordinated quantitative result in the model.

Considering the dynamic time effect of the mental workload, the present study improved the method of
quantifying time pressure [17]. According to the TLAP, the time pressure affecting the mental workload
is highly correlated with TR/TA on the timeline process. Therefore, the adapted calculation of the time
pressure Ti is as follows, where TAi is the available time of the i-th AOI, given by the system for the
operator to perform a task, and TRi is the required time of the i-th AOI, needed by the operator.

Ti = TRi/TAi (8)

TRi can be represented by the time required by the operator from information presentation to perception,
understanding, and reaction. According to the “behavior time prediction” method, the time from perception
to reaction includes the reaction time Tci and the exercise time Tdi. Tci can be subdivided into simple
reaction time and selective time. The simple reaction time of different sensory channels can refer to
empirical data [3]. Hick-Hyman Law [11] can be employed in calculating the selective time. Ic is the
information quantity constant, with the value 50–157 ms, and the average is 92 ms. H is the average
information amount of the stimulation signal in the i-th AOI. The exercise time Tdi is calculated by Fitts’
Law [7], where Im is the motion control constant, with the value 70–120 ms and the average 100 ms;
log2(D/S + 1) is the motion difficulty index, where D is the target distance and S is the width of the
target object.

TRi = Tci + Tdi = Ic ×H + Im × log2(D/S + 1) (9)

Altogether, the multi-factor mental workload prediction value mwl
j of the j-th task unit decomposed

by task 1 is obtained:

mwl
j =

n∑
i=1

(Hi ∗ Ti ∗ C−2
i ) ∗ nfi

=

n∑
i=1

{
Pi[log2(1/Pi)](TRi/TAi)C

−2
i

(
nAi

/
n∑

i=1

Ai

)}
(10)

=

n∑
i=1

{
Pi[log2(1/Pi)]([Ic ×H + Im × log2(D/S + 1)]C−2

i

(
nAi

/
n∑

i=1

Ai

)}

2.4. Dynamic time effect calculation of mental workload

To monitor the pilots’ mental workload state in real time, the IMW, CMW, TMW, and AMW are
established under the dynamic conceptual framework of mental workload [13,14].

IMW is defined as the instantaneous amount of mental workload at a given time. Combined with K l
j

and mwl
j , the IMW MW l

j(t) (in bit) for the j-th task unit decomposed by task l can be obtained:

MW l
j(t) = K l

j ∗mwl
j = K l

j ∗
n∑

i=1

(Hi ∗ Ti ∗ C−2
i ) ∗ nfi (11)
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Fig. 1. Simulated interface of B737, A320, and ARJ21, cruising flight phase (left) and simulation (right).

The TMW MW l
T (in bit × s) is defined as the total accumulation of mental workload from the start

time to the end time. In the formula, T0 represents the initial time, and T represents the termination time.
Mathematical expressions of other mental workloads can be obtained from the mathematical expressions
of IMW.

MW l
T =

∫ T

T0

MW l
j(t)dt =

m∑
j=1

MW l
j(t)∆tj =

m∑
j=1

K l
j ∗mwl

j∆tj (12)

The AMW (in bit) is defined as the average intensity of mental workload throughout the time course.

MW
l

=
MW l

T

T − T0
=

∑m
j=1MW l

j(t)∆tj

T − T0
=

∑m
j=1K

l
j ∗mwl

j∆tj

T − T0
(13)

3. Experimental method

3.1. Participants

The study was performed on 21 participants (19 males and 2 females), with an average age of 24.5 years
(N = 21, Mage = 24.5, SD = 1.0). They had an aeronautical knowledge background, right hand, normal or
corrected vision, and no color blindness. The participants were required to participate in flight simulation
training until they were fully familiar with the flight operations.

3.2. Study design

The study was based on the actual flight tasks, using the display interface (3) × flight task (4) two-factor
repeated measurement of the interior design of the test. As shown in Fig. 1, the display interface included
three levels: the virtual main flight display (PFD) of B737, A320, and ARJ21, with proper simplification
and abstraction. The flight phase included the takeoff phase and three cruise phases (90◦ turn, straight,
and 180◦ turn). To avoid the practice and fatigue effects, the experimental sequence was designed in
Latin.

3.3. Materials

The experiment was carried out in a Boeing 737–800 flight simulator, with real-time performance and
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Fig. 2. IMW of the three display interfaces during the takeoff phase.

eye movement indicators monitored. Within 15 min after the end of each experiment, the participants
were asked to finish the subjective evaluation of different display interfaces and flight phases according to
their real feelings.

Since the flight task performance was difficult to measure directly, the reaction time and the accuracy
of the embedded subtask were used as performance indicators, which were automatically recorded by
MATLAB programming through keyboard operation. The Swedish noncontact infrared eye tracking
system Smart Eye Pro 4.5 was used to record the eye movement data, with an accuracy of better
than 1◦ and a 60 Hz sampling rate. National Aeronautics and Space Administration-Task Load Index
(NASA-TLX) [5] software was used for subjective evaluation.

3.4. Experiment task

This experiment applied the embedded subtask method proposed by Wickens et al. [3], requiring the
participant to monitor and identify the flight information on the PFD and navigation display (ND) using the
remaining capabilities while ensuring that the manual control task (main task) was completed, including
airspeed, altitude, pitch, and heading. During the experiment, the display interface was frozen and covered
at any time, and the subject answered questions about the current value or change characteristics of the
flight information within the specified time.

Manual control flight task is a simulated dynamic flight task for takeoff and cruise under a specified
interface. The participants need to complete the takeoff operation by controlling the landing gear, throttle,
flaps, and so on. The simulated cruise tasks consist of three phases. The participants are asked to control
the steering wheel so that the aircraft can fly along the prescribed flight path and keep the airspeed,
altitude, and attitude within the normal range.

4. Results

4.1. Theoretical predictions

First, the takeoff phase lasts 109 s. The operations using accumulated long-term memory related to
operation steps through experience and learning are divided into 11 task units. Second, the cruise phase
lasts for 240 s and is decomposed into a single task unit. PFD and ND are divided into five AOIs. Then,
the IMW value is calculated, as shown in Fig. 2. The TMW and AMW are shown in Table 1.
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Table 1
Mental workload prediction and descriptive statistics (mean ± SD)

TMW
/bit × s

AMW
/bit

Correct
rate
/1

Reaction
time

/s

Subjective
evaluation

/point

Blink
frequency

/Hz

Average
gaze time

/s
B737 1 590.92 5.42 0.40 ± 0.18 4.98 ± 1.71 66.47 ± 12.67 0.22 ± 0.14 0.20 ± 0.15

2 876.91 3.65 0.60 ± 0.21 4.44 ± 1.35 67.91 ± 7.89 0.15 ± 0.12 0.17 ± 0.14
3 362.07 1.51 0.67 ± 0.16 4.44 ± 1.30 54.97 ± 11.31 0.15 ± 0.12 0.18 ± 0.15
4 1010.02 4.21 0.61 ± 0.15 4.47 ± 1.36 70.72 ± 8.48 0.11 ± 0.09 0.15 ± 0.12

A320 1 552.63 5.07 0.47 ± 0.16 5.80 ± 2.14 67.08 ± 13.37 0.23 ± 0.12 0.17 ± 0.12
2 876.60 3.65 0.55 ± 0.20 4.54 ± 1.08 67.50 ± 7.78 0.17 ± 0.11 0.15 ± 0.10
3 362.86 1.51 0.67 ± 0.16 4.74 ± 1.95 52.75 ± 11.08 0.16 ± 0.11 0.20 ± 0.19
4 997.89 4.16 0.63 ± 0.20 4.54 ± 1.43 72.20 ± 7.98 0.12 ± 0.09 0.14 ± 0.12

ARJ21 1 606.10 5.56 0.44 ± 0.17 5.19 ± 1.36 67.25 ± 11.78 0.22 ± 0.11 0.24 ± 0.20
2 905.02 3.77 0.52 ± 0.21 4.69 ± 1.63 70.18 ± 8.45 0.14 ± 0.11 0.17 ± 0.12
3 370.46 1.54 0.63 ± 0.21 4.33 ± 1.78 54.60 ± 10.29 0.15 ± 0.11 0.22 ± 0.19
4 1022.92 4.26 0.57 ± 0.20 4.26 ± 0.94 72.46 ± 7.81 0.13 ± 0.10 0.18 ± 0.14

Note: MW conditions are 1 (takeoff), 2 (90◦ turn), 3 (straight), and 4 (180◦ turn).

Fig. 3. Distribution of gaze points (left) and correlation between mental workload prediction and some experimental values
(right).
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4.2. Experiment result

The repeated-measures variance analysis (RMANOVA) of the two-factor design showed that the main
effect of the display interface was only significant for the average gaze time (P = 0.005). The main
effects of the flight phase on all indicators were significant (P < 0.005). The interaction effect between
the two factors was not significant.

The multiple comparisons after single-factor test showed that the performance, subjective evaluation,
and blink frequency were not significant among the three interfaces, and the gaze time was partially
significant (PB737,ARJ21 = 0.042, PA320,ARJ21 = 0.004). Meanwhile, performance, subjective evaluation,
and blink frequency were significant between the takeoff and straight phase (P = 0.001, 0.013, 0.001,
and 0.001), and only the blink frequency was significant between 90◦ turn and 180◦ turn (P = 0.001).

As shown in Fig. 3, the Pearson correlation analysis between the prediction and experimental results
indicated a significant positive correlation between TMW and subjective evaluation (r = 0.9, P <
0.001) and a significant negative correlation with mean gaze time (r = −0.681, P = 0.015). The AMW
significantly positively correlated with the subjective evaluation (r = 0.809, P = 0.001) and reaction
time (r = 0.537, P = 0.072) and significantly negatively correlated with the correct rate (r = −0.839,
P = 0.001). The blink frequency was not related to the TMW and the AMW.

5. Discussion and conclusion

The ergonomics simulation experiment verified the sensitivity of each measure indicator to the mental
workload under different display interfaces and flight tasks, so the performance of embedded subtask,
National Aeronautics and Space Administration-Task Load Index (NASA-TLX) subjective evaluation,
and eye tracking could construct a comprehensive evaluation system of pilots’ mental workload in
actual flight environment. The low correct rate, long reaction time, high subjective evaluation, low blink
frequency, and short average gaze time could mean the overload of the pilots which should be avoided.

Since the main effect of NASA-TLX is significant in different flight phases, and the correlation
between the results of NASA-TLX and the TMW compared with the AMW is better, the TMW can be
measured by the subjective evaluation of NASA-TLX, which is consistent with the results of dynamic
mental workload framework [13,14]. The main effects of performance in different flight phases are
also significant. AMW negatively correlates with accuracy and positively correlates with reaction time,
showing that the performance of embedded subtasks is reliable to AMW. Consequently, the research
framework with AMW, TMW. and IMW is more accurate than that with a single workload.

On one hand, studies have proved that gaze time not only is a sensitive indicator of task difficulty
but also can be used to judge the readability of display interface [2,5,8,10]. The main effect of the gaze
time is significant under the display interface and in the flight phase. Furthermore, a significant positive
correlation exists with the theoretical prediction under the display interface, while a significant negative
correlation is present in the flight phase. This may be due to the fact that, to achieve better performance,
participants allocate more mental resources to complete the embedded subtask under the condition of the
lower workload of the main flight task, thus showing the opposite trend of the gaze time. On the other
hand, related studies have explained that an increase in the perceived workload can lead to a decrease in
the blink frequency, and an increase in cognitive workload can lead to a faster blink frequency [2,5,8,17].
The main effect of the blink frequency in the flight phase is significant: takeoff > straight > 90◦ turn >
180◦ turn. The possible reason why the theoretical prediction does not correlate with the blink frequency
is that during the takeoff, the mental workload is mainly the cognitive workload caused by decoding
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memory, while during the cruise, the mental workload is mainly due to the perception workload caused
by tracking flight information. With the increase in the turning angle, the perception workload increases
and the blink frequency decreases, which is consistent with the theoretical prediction and verifies the
prediction model.

The significant main effects and correlations in the flight phase indicate that the prediction model has
good validity and availability for complex tasks with dynamic time variation. The display interface is only
significant at the gaze time because the three interfaces are from active models that meet airworthiness
standards and do not significantly increase pilots’ mental workload. Nevertheless, the trend is basically
the same under each metric: the ARJ21 interface has the highest subjective evaluation, the lowest correct
rate, the longest gaze time, and the lowest blink frequency. The difference between B737 and A320 is
small, which is consistent with the theoretical prediction.

Compared to most of the existing mental workload quantitative models, the present study proposed
a dynamic prediction model of mental workload based on timeline analysis. Through the timeline task
analysis, complex flight tasks were decomposed into several simple task units. The McCracken-Aldrich
scale was used to assign the task units to four channels, and the impact of task type and complexity
on mental workload was comprehensively analyzed and quantified. Benefiting from the improved time
pressure quantification method and the adjusted proportion of visual coding in the model, the accuracy of
multi-factor mental workload prediction improved. Besides, the dynamic time conceptual framework of
mental workload was introduced to realize real-time monitoring, analysis, and prediction of pilots’ mental
workload status. As a result, the model could be applied to reduce aviation accidents by predicting overload
of the pilots and proposing real-time and effective solutions throughout the flight phase. Meanwhile,
without considering resource interference between multitasking, the model had limited accuracy in the
multi-task environment. Follow-up studies may further improve the mental workload prediction model.
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