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Abstract.

BACKGROUND: Pulse wave monitoring is widely used to evaluate the physiological and pathological states of the cardiovas-
cular system.

OBJECTIVE: High-sensitivity ring sensors were designed, and a simultaneous acquisition platform based on National Instru-
ments T-Clock technology (NI-TCLK) was used to achieve simultaneous pulse detection using both the traditional method and
the magnetic induction phase shift (MIPS) method.

METHODS: The excitation signal had a frequency of approximately 10.7 MHz and power of about 20 dBm. A total of 30
volunteers (adults, aged 20-30 y) were selected to corroborate the feasibility of our measurement system. The subjects wore
the proposed sensor on their right-hand forefingers and for reference, the piezoelectric pulse sensor on the left-hand forefinger.
The pulse waves of these 30 subjects were measured over 2 min each.

RESULTS: The phase shift of the magnetic induction detection signal ranged from 0.6-0.8 degrees. Comparison of detection
results for the same subject between the two methods showed that the pulse rate measured by magnetic induction exhibited
fewer deviations and better stability than the traditional method. In addition, spectral analysis indicated that the pulse frequen-
cies obtained using the 2 methods were concentrated between 1-3 Hz and were regular in the 1.5 Hz frequency region.
CONCLUSIONS: These results prove that the magnetic induction pulse wave can be used to accurately measure pulse wave
features.

Keywords: Magnetic induction phase shift, pulse wave, ring coil, synchronous measurement

1. Introduction

The Reports on Cardiovascular Diseases 2015 in China indicates that cardiovascular disease (CVD)
is still among the leading causes of mortality, with 2 in every 5 deaths attributed to it [1]. Therefore, di-
agnosis and prevention of CVD is an urgent problem in China. Clinical studies show that the waveform
of the pulse wave signal, which is induced by the periodic systole and diastole of the heart, is one of the
early responses to changes in cardiovascular hemodynamic parameters [2]. In 2014, Ben-Shlomo found
that aortic pulse wave velocity could improve the identification of high-risk populations [3]. The change

! The authors contributed equally to this work.
*Corresponding author: Hua Feng, Department of Neurosurgery, Southwest Hospital, Chongging 400038, China. Tel.: +86
023 68771267; E-mail: 1306542011 @qq.com.

0928-7329/18/$35.00 (© 2018 — IOS Press and the authors. All rights reserved
This article is published online with Open Access and distributed under the terms of the Creative Commons Attribution Non-
Commercial License (CC BY-NC 4.0).



S158 J. Sun et al. / An experimental study of pulse wave measurements with MIPS method

in pulse wave characteristics, such as pulse wave velocity, is widely used as a noninvasive marker to
evaluate arterial stiffness [4]. In 2015, Yu et al. proposed a method of estimating heart rate (HR) that is
applicable for ordinary cameras subject to natural head movement or facial expression. The proposed
method features region-of-interest (ROI) detection via facial feature detection and tracking, target signal
extraction by independent component analysis in the RGB channels, and HR estimation via a real-valued
iterative adaptive approach [5]. In 2016, Kusuma et al. designed a device for arrhythmia detection on the
basis of the fingertip pulse sensor and overall system testing for 10 respondents whose results had an av-
erage precision of 77.25% [6]. The major classes of fingertip pulse detection sensors include piezoelec-
tric pulse sensors, semiconductor pressure sensors, and fiber optic pulse sensors. Piezoelectric sensors
feature high sensitivity and the ability to perform long-term continuous detection; however, they exhibit
poor anti-interference capacity and low stability [7]. Semiconductor strain gauge sensors feature high
sensitivity and low transverse sensitivity, but these sensors require high adhesion between the sheets and
the sensor, and the adhesion quality can affect the precision [9]. Fiber optic pulse sensors feature high
sensitivity, high accuracy, small size, and tolerance of high electromagnetic interference; however, they
are susceptible to interference from environmental noise and polarization fading [11]. Photoplethysmog-
raphy (PPG) [12] is commonly used in the clinic as a noncontact pulse detection method. PPG exhibits
strong resistance to interference, high linearity, and high sensitivity, but is limited by the unknown mech-
anisms of volume pulse wave bloodstream signals, a narrow detection scope, and its unsuitability for
long-term continuous detection. Pflugradt et al. [13] developed an ectopic beat discriminator with low
computational complexity, which uses multimodal features derived from ECG and pulse wave-related
measurements.

Magnetic induction phase shift shows considerable potential for detecting biological signals. The
MIPS method is based on detecting the conductivity of biological tissues. The system generates a main
magnetic field through the excitation coil, which acts on biological tissues. The phase shift between the
excitation magnetic field (EMF) and the induced magnetic field (IMF) reflect the change in conductivity
in biological tissues. The first measurement method based on magnetic induction was proposed in 1968
by Tarjan and Mcfee [14] and has been applied to the study of human tumors and brain impedance.
Existing studies focus on the care of patients with brain tumors, cerebral hemorrhages, brain edema,
and breast cancer [15]. Another application of magnetic induction phase shift is the detection of car-
diorespiratory activity. Noncontact monitoring of cardiorespiratory activity by electromagnetic coupling
with human tissue is investigated by Philips Corporation [17]. In 2014, Jin et al. [18] developed a novel
and sensitive coil detection system based on the MIPS method; cerebral hemorrhage in rabbits can be
detected using the technique with high sensitivity and anti-interference ability. In 2015, Pan et al. [19]
employed the MIPS technique to detect cerebral hemorrhage in rabbits, which was larger than that in a
previous study. In 2017, Li et al. [20] used the MIPS method to evaluate cerebral hemorrhage and cere-
bral edema in rabbits and obtained satisfactory experimental results. Most of the existing fingertip pulse
sensor may cause a sensation, such as a continuous physical force on fingers. This study introduces a
simple noncontact pulse detection device based on the MIPS method. Given its noncontact technology,
the MIPS technique exerts no pressure on fingers and may require a long time recording. In addition, the
proposed pulse sensor is ring-like; thus, patients can perform recipient pulse monitoring.

2. Principles and method
2.1. Principles

In pulse detection via the MIPS method, an EMF within a specific frequency range acts on the fingers.
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Electromagnetic induction causes a phase difference between the EMF and the IMF. Changes in MIPS
are correlated with changes in vascular blood volume; thus, the MIPS method can reflect pulse changes.
Figure 1 illustrates the principles of MIPS.

An induction signal is sent to the excitation coil, which produces an alternating magnetic field (AMF)
referred to as EMF. When the AMF passes the fingers, electromagnetic induction generates an induction
current, which produces a disturbed magnetic field on the detection coil. It changes the distribution of
the original magnetic field, and can be detected by the detection coil. Changes in blood flow in the finger
vessels cause the intensity and distribution of the induction current to change. Thus, the detection coil
produces a phase difference between the detection signal and the induction signal. The change in reflects
the change in the magnetic field, reflecting the change in conductivity.

2.2. Detection system

The MIPS detection system mainly consists of 4 modules: a signal generator, a MIPS pulse detection
sensor, a National Instruments PXI DAQ system (NI, USA), and a LabVIEW software interface. To
compare with traditional clinical detection methods, this system introduces piezoelectric pulse monitor-
ing as a reference. The workflow of the magnetic induction pulse detection system is presented in Fig. 2.
The first step in synchronous pulse measurement is to collect the test signals of the excitation source
via the receiving coil of the MIPS monitoring system. The reference signals from the excitation source
are collected using the DAQ card NI-PXI5124. The signals are then sent to the phase detector. Tradi-
tional pulse signals from the piezoelectric pulse sensor are collected using another NI-PXI5124 DAQ
card. Two testing waveforms, which are measured simultaneously using the traditional and magnetic
methods, are shown on the LabVIEW display interface.



S160 J. Sun et al. / An experimental study of pulse wave measurements with MIPS method

= /3 receiving coil

(@) o)

Fig. 3. (a) Magnetic induction pulse sensor and (b) Simulation of its operation.

MIPS&ECG Synchronous Surveying System

Source 1 Source 2 original | synchronous(points) | synchronous(time) tendency | 120
% 5124-1 ~ %5124-2 ~
o = n A MIPS
channel 1 channel 2
70.6-,
01 0 E
70.57
le rate 2 ] E
sample ratel sample rate T 7041
4.00k = :
100.00M 8 7035
sample points 1| sample points 2 ® 702
400000 260 ]
TOLZ v RN REEER
0 0.5 1 15 2 25 3 35 4 45 5
NO.1 real sample rate  100M time
NO.1 real sample points ' 400000 Pulse
2-
NO.2 real sample rate 4k E
NO.2 real sample rate 260 ~§ 17
real time phase s
P 70.3486 £ o2
cycle number 195 ]
1- | | | ! ER | ' | |
0 05 1 15 2 25 3 35 4 45 5
time
STOP
=

Fig. 4. Front panel of the synchronous measurement system.

2.3. Sensors

The MIPS sensor presented in Fig. 3a is composed of 2 copper conductor coils of different sizes. The
diameter of the copper conductor wire was 0.3 mm; that of the inside excitation coil was 2 cm; and that
of the outside receiving coil was 2.5 cm. Both coils had 10 turns and were able to fit the fingers of the
subject. Figure 3b presents a magnetic induction phase shift sensor with stimulated coils; the arrows
represent the magnetic field intensity. The direction of the arrows indicates the direction of the field, and
their size and color represent the magnitude of the field.

2.4. Experimental design, signal collection, and analysis

The signal generator produced 2 sinusoidal signals with the same frequency and initial phase. The
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Fig. 6. Synchronous pulse wave measurement of volunteers.

excitation signal had a frequency of approximately 10.7 MHz and power of 20 dBm. The pulse waves
were collected using LabVIEW, a graphic programming language developed by National Instrument
Company, USA. The National Instruments T-Clock (NI-TCLK) technology ensured the synchronous
precision of 2 collection cards within picoseconds. The NI-TCLK technology was used to achieve a syn-
chronous collection of pulse wave measurements by using the traditional pulse method and the proposed
MIPS detection system. The FFT phase detection algorithm [22,23] can effectively inhibit interference
from Gaussian white noise with high speed and precision. The memory and display unit are responsible
for the real-time display of the measurement state and for data storage, which facilitate later processing.
The front panel and the program layout are shown in Figs 4 and 5, respectively.

A total of 30 volunteers (adults, aged 20-30 y) were selected to corroborate the feasibility of our
measurement system. All volunteers met the following conditions: (1) healthy, without CVD or other
diseases that would render the subject unsuitable for our experiments and (2) no implanted medical
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Fig. 8. Change in phase shift after removal of the baseline drift.

devices such as a pacemaker or a metal stent. Before the experiment, the height and weight of the
subjects were measured and recorded. The subjects wore the sensor on their right forefingers and for
reference, the piezoelectric pulse sensor on their left forefingers. As shown in Fig. 6, the subjects lay
down on the bed and relaxed during the measurement. The pulse waves of the 30 subjects were measured
for 2 min each.

To confirm the stability of this method, the pulse was measured synchronously 10 times for the same
volunteer under the resting state using MIPS pulse measurement system and the traditional pulse detec-
tion method. The 2-minute measurements were collected every 5 min, and the results of the 2 methods
were recorded and analyzed.

3. Results

The height, weight, magnetic induction pulse frequency, and piezoelectric pulse frequency of the
subjects were recorded. Table 1 lists the results.

The results obtained using the MIPS pulse sensor were consistent with those obtained using the tradi-
tional pulse sensor. The pulse rates of subjects with different symptoms vary, reflecting the differences in
cardiovascular activity among individuals. The pulse rates of the females were clearly higher than those
of the males.

For subject 5, the original waveform of the pulse phase difference recorded by the coil ring is presented
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Table 1
Physical characteristics and measurements of the volunteers
No. Gender Age Height (cm) Weight (kg) Pulse frequency (times/min) Pulse frequency
magnetic induction (times/min) piezoelectric
1 Male 24 171 68 66 65
2 Male 24 185 75 81 81
3 Male 22 165 67 66 67
4 Male 25 168 63 61 61
5 Male 24 165 60 71 71
6 Male 22 160 55 85 84
7 Female 23 165 57 80 80
8 Female 22 158 49 78 77
9 Female 24 170 60 82 82
10 Female 21 161 50 70 69
11 Female 22 162 51 72 72
12 Female 22 165 60 78 78
13 Female 23 160 52 75 75
14 Male 21 165 65 70 69
15 Male 24 168 64 66 66
16 Male 22 170 70 61 62
17 Male 24 172 72 67 67
18 Male 24 175 72 65 65
19 Male 24 174 73 64 64
20 Male 22 165 58 62 61
21 Male 23 168 60 65 65
22 Male 23 182 74 68 68
23 Female 25 162 50 75 75
24 Female 21 163 51 83 82
25 Female 23 160 53 78 78
26 Female 22 158 48 80 80
27 Female 23 166 53 82 82
28 Female 24 164 52 76 76
29 Female 22 160 50 74 74
30 Female 23 166 55 78 78
Table 2
Comparison between the magnetic induction method and the traditional method for 10 measurements of the same subject
Magnetic induction method Traditional method
Pulse frequency (times/min) 71.3 (0.008) 71.1(0.013)

in Fig. 7. The X-axis represents time, whereas the Y-axis represents the phase difference. The amplitude
of change in MIPS is approximately 0.6°-0.8°.

Figure 8 shows the MIPS data after signal preprocessing. The processed pulse signals preserved the
major characteristics of the original pulse signals, with almost no influence from baseline drift.

The MIPS and piezoelectric pulse sensor data from 10 consecutive measurements of the same vol-
unteer were analyzed by computing for the mean and variance of the results from each method. These
results are listed in Table 2. The MIPS method presented less variation compared with the traditional
method.

For subject 5, MIPS signals and traditional pulse signals were used in spectral analysis. The sampling
rate in MIPS method was 100 MHz, whereas that in the traditional pulse detection method was 200 KHz.
The time-domain signals from the synchronous measurement of the 2 methods are shown in Fig. 9a, and
the Fourier transform between signals is shown in Fig. 9b.

Clearly, the 2 channels of pulse signals from synchronous acquisition were similar in shape, with both
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Fig. 9. (a) Detection signal; (b) Signal spectrum.
being composed of a main wave and a dicrotic wave [24]. Spectral analysis showed the pulse frequencies

of the two methods were consistent and concentrated in 1-3 Hz and were regular in the 1.5 Hz frequency
region.

4. Discussion

Clinical pulse sensors are contact-type sensors, which are clamped or tightly pressed against the finger
of the patient to obtain more accurate pulse wave signals. However, some patients, such as those with
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burns or skin allergies do not feel comfortable with this method. Moreover, traditional fingertip pulse
sensors usually need to be moved to another finger after 1 h to avoid insufficient blood supply; thus,
these sensors are unsuitable for continuous monitoring of the pulse wave signals. The noncontact MIPS
pulse sensor designed in this study provides advantages, such as noninvasive, convenient, and continuous
monitoring with stability.

In this study, the pulse wave amplitude measured using the MIPS pulse sensor ranged from 0.6°
to 0.8°, with significantly improved sensitivity. Jin et al. [18] proposed the contralateral hemisphere
cancellation method based on the natural symmetry of the left and right brain hemispheres. MIPS ranged
from 0.2° to 0.4° with 1 mL blood injected. While blood in the finger vessels within each beat is less
than 1 mL, the increasing sensitivity was relatively obvious. To improve sensitivity, we also miniaturized
the sensor as much as possible. The pulse sensors needed to be as small as a ring to improve sensitivity
by producing a much stronger primary magnetic field under the radiation of the same safety standards.
Baseline drift usually comes from breathing, with a frequency ranging from 0.15 Hz to 0.3 Hz. Owing
to of the low frequency of this baseline drift, a high-pass filter can be designed to adjust the baseline by
filtering out this low-frequency interference.

To verity its reliability, the MIPS method of pulse measurement was compared with the traditional
methods of pulse measurement. Piezoelectric sensors are widely used for clinical measurements [7,8].
Therefore, piezoelectric sensors were chosen as a reference for comparison with the magnetic pulse
measurement in the present study. NI-TCLK was used to collect synchronous pulse wave signals with
high synchronous precision. The results for the 30 volunteers suggest that the measurements obtained
using the MIPS technique are comparable to those obtained using the traditional pulse detection method.
The MIPS system can also measure pulse rates from individuals of either gender and various physiolog-
ical states. It also provides reliable measurements. In addition, the synchronous MIPS signals and the
traditional pulse signals were used for spectral analysis, which confirmed the similarity of the 2 signals.
Thus, the signal obtained using the MIPS method can indeed reflect the main features of the pulse wave
signal.

The MIPS method and the traditional method were employed to measure the resting pulse of the same
volunteer 10 times to confirm the stability of this system. The results of the statistical analysis indicate
that the MIPS method exhibits a more stable performance compared with the traditional method, thus
showing less variability.

Although some positive experimental results are obtained, certain aspects of this measurement system
have yet to be improved. First, synchronous measurements show that the 2 pulse peaks do not overlap.
The MIPS signals are approximately 100 ms delayed relative to those of the traditional pulse peaks. The
main reason for this may be that the hysteretic nature of the MIPS algorithm. Another reason may be
the systematic instrument error or the time inconsistency caused by measuring different blood vessels.
Second, the MIPS system needs to be compressed in future designs. For example, this technology could
be embedded in a ring that could transfer pulse data to a remote terminal by wireless communication.
In addition, to obtain more reliable pulse signals, an in-depth analysis of the interference from motion
artifacts has to be conducted.

5. Conclusion
This study used MIPS method to perform noncontact pulse measurements. The magnetic induction

pulse sensor is easy to set up and convenient to use. It also exhibits high sensitivity and a stable perfor-
mance. Spectral analysis also shows that MIPS signals can reflect the major characteristics of the pulse
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signal. The experimental results revealed that our proposed MIPS system is suitable for clinical use. This
method overcomes some disadvantages of traditional pulse sensors, such as sensation of pressure, finger
ischemia, and skin sensitivity. Moreover, the noncontact magnetic induction pulse measurement system
enables pulse measurements for burn patients and others requiring noncontact and requires further re-
search and development. Future studies should focus on hardware integration and microminiaturization
of the system to improve its portability. A more accessible software interface is required to enable ex-
pedient use. Moreover, this system should be used to measure the pulse characteristics in patients with
pathological conditions to explore effective methods of analyzing MIPS signals to identify pathological
conditions. The next step of our study is the use of pulse wave signals obtained using the MIPS methods
to calculate parameters, such as pulse wave velocity and other useful information. These studies can
improve the clinical diagnosis and treatment of CVD.
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