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Abstract.
BACKGROUND: Detection of clustered microcalcification (MC) from mammograms plays essential roles in computer-aided
diagnosis for early stage breast cancer.
OBJECTIVE: To tackle problems associated with the diversity of data structures of MC lesions and the variability of normal
breast tissues, multi-pattern sample space learning is required.
METHODS: In this paper, a novel grouped fuzzy Support Vector Machine (SVM) algorithm with sample space partition based
on Expectation-Maximization (EM) (called G-FSVM) is proposed for clustered MC detection. The diversified pattern of train-
ing data is partitioned into several groups based on EM algorithm. Then a series of fuzzy SVM are integrated for classification
with each group of samples from the MC lesions and normal breast tissues.
RESULTS: From DDSM database, a total of 1,064 suspicious regions are selected from 239 mammography, and the measure-
ment of Accuracy, True Positive Rate (TPR), False Positive Rate (FPR) and EVL = TPR*

√
1− FPR are 0.82, 0.78, 0.14 and

0.72, respectively.
CONCLUSION: The proposed method incorporates the merits of fuzzy SVM and multi-pattern sample space learning, de-
composing the MC detection problem into serial simple two-class classification. Experimental results from synthetic data and
DDSM database demonstrate that our integrated classification framework reduces the false positive rate significantly while
maintaining the true positive rate.
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1. Introduction

Breast cancer is one of the most common causes of death among middle-aged women, with incidence
increasingly on the rise during recent years. Mammography is the most widely used diagnostic technique
for the early detection of breast cancer [1] because it is a low-cost, low-radiation-dose procedure with
sufficient sensitivity to detect early-stage breast cancer. The most frequent markers of breast cancer
are clustered MC [2], which appears in 30–50% of mammographic-diagnosed cases and shows a high
correlation with breast cancer [3]. Therefore, the detection of MC in mammography is the most effective
way of defeating breast cancer [4].
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Over the past dozen years, researchers have developed classifiers for better detection of MC, such as
Artificial Neural Networks (ANN) [5,6] and Support Vector Machines (SVM) [7–9]. Dehghan showed
that SVM with polynomial kernel and SVM with Gaussian RBF kernel achieve a higher true positive
detection rate than Neural Networks (NN) [5]. Having evaluated the SVM, Kernel Fisher Discrimi-
nant (KFD), Relevance Vector Machine (RVM), Feedforward Neural Network (FNN), and Committee
Machines, Wei concluded that the kernel-based method (SVM, KFD, and RVM) yielded the best perfor-
mance [9]. However, because of the diversity features of the MC regions and the variability of normal
breast tissues, single kernel SVM is still unable to provide a satisfactory accuracy rate.

To characterize this feature, researchers proposed to incorporate feature subspace learning algorithms
into the classifiers. Li designed a combinational SVM [10] with the polynomial SVM to MC and the lin-
ear SVM to non-MC pixels, respectively, which achieved a significant reduction in false positive detec-
tion while simultaneously preserving the true positive detection rate. Zhang proposed an SVM-based ap-
proach by embedding General Tensor Discriminant Analysis (GTDA) of feature subspace learning [11].
Chang presented a Multiple Kernel Support Vector Machine with Grouped Features [12] to discern the
inhomogeneous features in both MC lesions and normal breast tissues of suspicious regions, which re-
duced the false positive rate significantly and maintained the true positive rate. Zhang showed that the
approach based on hybrid subspace fusion for MC detection [13] could obtain satisfactory sensitivity
results as well as reduce the false positive rate.

In addition, two difficulties and challenges still exist when SVM is applied to the clustered MC de-
tection problem. The first challenge is the complicated structural information of sample space, both in
MC lesions and normal breast tissues space. Like many real-world problems, large amounts of sam-
ples imply that different classes may have different underlying data structures that exhibit different data
distribution [14]. It has been shown that the structural information of data may contain useful prior do-
main knowledge for training a classifier [15]. Therefore, an ideal classifier should consider the structural
information of the corresponding class and have a good discrimination ability of the within class diver-
sities [16]. However, the traditional SVM-based classifiers mainly characterize the difference between
different classes, which do not sufficiently consider the diversity within the classes [17]. Due to the fact
that both MC lesions (positive class) and normal breast tissues (negative class) are inhomogeneous, we
propose that single Probability Density Functions (PDF) based classification cannot fully characterize
the diversified sub-patterns within classes, which requires multi-pattern sample space learning to both
MC lesions and normal breast tissues space.

The second main challenge is the inability of the state-of-the-art methods to characterize different
contributions of different samples for the classification. Oftentimes, some training samples are more
important than others in a given classification task, i.e., the effects of the training points are different [18].
However, in traditional SVM, each training sample is treated as equally weighted, which makes the
classifier very sensitive to outliers or noises in the training periods [19].

To address the above problems, a novel grouped fuzzy SVM algorithm with an EM-based partition
of sample space called G-FSVM is proposed in this paper. To obtain the diversity of data structures and
extract the structural information embedded within classes, the sample space of both MC lesions and
normal breast tissues are considered as Gaussian Mixture Model (GMM), and each component of GMM
represents a cluster of one objective class. GMM was chosen as the mixture model for the following
reasons [20]: (1) It is reasonable from the center limit theorem. (2) It is convenient in calculation with
Expectation-Maximization (EM) algorithm. (3) Any mixture model can be approximated to GMM the-
oretically by increasing the number of the model. Then, we estimate the parameter of GMM with EM
algorithm and partition the sample space into several sub spaces. Specifically, the partition of sample
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space based on EM preserves the diversity structural information of the sample space, which provides
as much information as possible for the classifier of sub space. Each subset of samples of MC lesions
and normal breast tissues are combined to train a suitable sub classifier. Furthermore, to address the
second problem, we quantify the contribution of different samples and employ fuzzy SVM as the sub
classifier of the final integrated classification. The fuzzy membership is defined by the probability of the
samples belonging to the subset of sample space by EM estimation, which can denote the importance
of the sample to the sub classifier. Taking these two factors into consideration, G-FSVM is presented to
successfully characterize the diversified sub-patterns and the different importance of each sample, which
cast the difficult two-class problem into a set of simple two-class classification problems.

The proposed G-FSVM differs in two ways from our previous method named Clustered Group Support
Vector Machine (GC-SVM) [21]. One of the differences lies in the sample subspace learning algorithm.
The partition of sample space in GC-SVM is completed with K-means clustering, which is strictly lim-
ited to distance computation, whereas the partition of sample space in G-FSVM is completed with EM
algorithm for GMM based on probability computation [22]. Therefore, sample space characterization is
based on statistics instead of geometrics, which is more stable in the diversity data structures. Another
difference between these two methods is the choice of sub classifiers. In GC-SVM, traditional SVM is
employed as the sub classifiers; however, in G-FSVM, the sub classifiers are fuzzy SVM, which takes
full use of the different importance of each sample and has better discriminatory power.

Experimental results in both synthetic data and real clustered MC detection show that G-FSVM can
significantly reduce the false positive rate while simultaneously maintaining the true positive rate for
clustered MC detection as compared with the different kernel SVMs and our previous method GC-SVM.

The rest of the paper is organized as follows. Section 2 presents the EM-based partition of sample
space and the integrated classification framework with fuzzy SVM. Section 3 describes the experimental
results of both synthetic data and clustered MC detection. Finally, the paper is concluded in Section 4.

2. Methods

In this section, G-FSVM method for clustered MC detection from mammography is presented to
deal with the diversity of underlying data structures in both MC lesions (positive class) and normal
breast tissues (negative classes). Firstly, the sample spaces are modeled as GMM, and each Gaussian
component represents a subspace of the MC lesions or the normal breast tissues. Secondly, EM algorithm
is employed to estimate the parameters and the contributions of each Gaussian distribution. In this way,
the training samples are divided into different groups, every sample in the specified group is attached
the same label, and fuzzy membership values are simultaneously defined based on the probability of the
samples belonging to the group. Finally, a series of fuzzy SVM sub-classifiers are integrated for MC
detection.

2.1. EM-based sample space partition

Suppose the training set has M samples, i.e., X = (x1, . . . ,xj , . . . ,xM ), for each sample xj con-
sisting of d features. Both the samples of MC lesions and normal breast tissues are considered as GMM,
the distribution of the samples is modeled by a linear combination of two or more Gaussian distribu-
tions [20]. Assuming the training samples with d features are generated from Gaussian mixture model
with N component, then:
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Fig. 1. Framework of EM algorithm.

p(x|Θ) =

N∑
i=1

aipi(x|θi) (1)

where Θ = (a1, . . . , aN ,θ1, . . . ,θN ), a = (a1, a2, . . . , aN ) is the weight of each distribution subjected
to
∑N

i=1 ai = 1, and pi is the PDF of the ith Gauss component corresponding to parameter θi, which
is mainly determined by mean vector µi and variance matrix Σi. Supposed the jth sample xj(j =
1, · · · ,M) generated by the Gaussian component with the corresponding parameter θi(i = 1, · · · , N),
that is

pi(xj |θi) =
1

(2π)d/2|Σi|1/2
exp

(
−(xj − µi)

T (xj − µi)

2Σi

)
(2)

For GMMs, the goal is to maximize the following log-likelihood:

l (θ) = log p (x|Θ) =

M∑
j=1

log

N∑
i=1

aipi (xj |θi) (3)

Unfortunately, maximizing the log likelihood Eq. (3) directly is often difficult because the log of the
sum can potentially couple all of the parameters of the model [23]. However, if the estimation problem
is reformulated in terms of so called latent or hidden variables Z = i(i = 1, · · · , N) as

l (Θ;x, Z = i) = log p (x|Θ) =

M∑
j=1

log

N∑
i=1

aipi (xj |Z = i,θ) (4)

the log of the sum can be simplified and the maximization problem can be solved by many optimization
algorithms [24]. As the latent variables cannot be observed directly, EM algorithm iteratively refines
the maximum likelihood estimation by first calculating the expectation of the posterior of the latent
variables Z, while keeping the parameters fixed. EM is a two-step algorithm with an expectation step
and a maximization step represented in Fig. 1.

Under fairly mild regularity conditions, EM can be shown to converge to a local maximum of the
likelihood. Although these conditions do not always hold in practice, EM iteration has been widely used
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for maximum likelihood estimation for mixture models with good results [25]. It should be noted that the
initial mean vector are randomly selected, the initial variance matrix is taken as whole data covariance
matrix and the initial weights are set equally. The expectation and maximization steps are repeated until
the convergence of Θ is reached.

With the estimated parameter Θ, the probability of every sample belonging to each Gaussian compo-
nent distribution can be computed. The group label of the sample is assigned according to the maximum
probability, and a kind of partition to the training sample space for the MC lesions and normal breast
tissues are obtained, that is, the training data of the MC lesions and normal breast tissues data are divided
into some different groups respectively. In addition, the weight of each distribution ai(i = 1, · · · , N) is
regarded as the percentage of the corresponding group.

The component number N of the Gaussians should be determined before the iterative process of EM,
however, for the fixed N , EM algorithm could estimate the parameter Θ = (a1, . . . , aN ,θ1, . . . ,θN )
for GMM as well as provide the log-likelihood function l (θ). Based on the relationship between the
maximum likelihood function and entropy as determined by Akaike in 1977, the best solution for de-
termining the number N is to minimize the Akaike Information Criterion (AIC) [26], which is defined
as:

AIC = 2s− 2l(θ) (5)

where s is the number of free parameters in the statistical model, and l(θ) is the log-likelihood for the
model.

2.2. Grouped fuzzy SVM with partition of sample space

To clearly demonstrate our method G-FSVM, we present training process and testing process respec-
tively.

In the training process, a model trained with integrated fuzzy SVM is proposed. Before formally
describing the frame of the fuzzy SVM with partition of sample space, we first present and illustrate the
idea of sample space partition in Fig. 2. Suppose that the samples of MC lesions (positive) and normal
breast tissues (negative) are partitioned to m and k subsets, severally, and then each subsets of positive
samples is combined with the negative samples. The clustered MC detection problem is casted into a
total of m× k simple two-class classification problems.

Let D denote the training data set with n samples and d features for the clustered MC detection
problem, that is:

D =
{

(xi, yi)
∣∣∣xi ∈ Rd, yi ∈ {1,−1}

}
, i = 1, · · · , n (6)

where yi is the corresponding desired output.
Based on the partition of sample space with EM, the subsets are given with its mean vector and

variance matrix as:

D+
i =

⋃a+
i n+

l=1
(xl, Pi, sl), i = 1, · · · ,m

D−
j =

⋃a−
j n−

l=1
(xl, Nj , sl), j = 1, · · · , k

where n+ is the number of positive training samples, n− the number of negative training samples, a+i
is the weight of the ith positive group, a−j is the weight of the jth negative group, Pi is the ith positive
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Fig. 2. Partition of training sample space. Fig. 3. Distance influenced by the dispersion of the sample sets.

group label, Nj is the jth negative group label, and sl is the probability of sample xl belong to D+
i or

belong to D−
j . Thus, the training data set can be described in another way:

D = D+ ∪D− =
(⋃m

i=1
D+

i

)⋃(⋃k

j=1
D−

j

)
(7)

By combining the samples with the subsets ofD+
i andD−

j , the training samples for the sub-classifiers
are given as the following:T = {(x1, y1, s1), (x2, y2, s2), · · · , (xL, yL, sL)}

xl ∈ Rd, yl ∈ {Pi, Nj}, 0 < sl 6 1
i = 1, · · ·m, j = 1, · · · k, l = 1, · · ·L

(8)

where L = a+i · n+ + a−j · n−.
The sub classifier Fij (i = 1, · · ·m, j = 1, · · · k) can be trained with fuzzy SVM according to:

min 1
2 ||w||

2 + C
L∑
l=1

slξl

yl(wxl + b) > 1− ξl
ξl > 0, l = 1, 2, · · · , L

(9)

It is noted that after the partition of sample space, sub classifier Fij may be imbalanced in size. In
this paper, we adopt a simple synthetic minority over-sampling technique [27], where a few artificial
samples are created based on the probability distribution of the existing minority samples from subset
D+

i (or D−
j ) to balance the number between the majority and minority classes.

In the testing process, we need to predict the label of the under detection mammographic image sample
x. The distance between x and each center of the subset D+

i (i = 1, · · · ,m) and D−
j (j = 1, · · · , k)

is calculated. The appropriate sub classifier is selected according to the calculated distance, which is
influenced by the tight density of the sample sets [28]. In Fig. 3, the distance between x and the center of
data 1 is much farther than the distance between x and the center of data 2. Here, we prefer sample x to
be much closer to data 1 because of the dispersion of data 1. To handle this condition, the Mahalanobis
distance is used here.
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Fig. 4. Prediction algorithm.

The calculated Mahalanobis distance between x and each center of the Di subset is indicated as
γ (x,Di), and Dmin and Dsecmin are defined as the following:

Dmin =

D∗

∣∣∣∣∣∣D∗ ∈ D且γ (x, D∗) = min
16i6m
16j6k

(
γ
(
x, D+

i

)
, γ
(
x, D−

j

)) (10)

Dsecmin =

D∗

∣∣∣∣∣∣D∗ ∈ D −Dmin且γ (x, D∗) = min
16i6m
16j6k

(
γ
(
x, D+

i

)
, γ
(
x, D−

j

)) (11)

When Dmin and Dsecmin both belong to D+, the sample x is predicted as the MC lesions sample. In
contrast, when Dmin and Dsecmin both belong to D−, the sample x is predicted as the normal breast
tissues sample. Finally, when Dmin ∈ D+ and Dsecmin ∈ D− or vice versa, the sample x is predicted
according to the sub classifier with the combined sample sets of Dmin and Dsecmin. In summary, the
prediction algorithm in Fig. 4 is performed to determine the class label of sample x.

3. Results

In this section, we compare our proposed G-FSVM with our previous method GC-SVM and traditional
SVM with different kernels on both synthetic data sets and real clustered MC detection.

3.1. Synthetic data classification

To objectively estimate the performance of the proposed G-FSVM, we first test it in synthetic datasets.
In our experiment, the first synthetic dataset consists of 400 random samples (vectors), and half of them
are positive, with the rest being negative. Both the positive and negative samples are divided into two
groups. They are all subject to Gaussian distribution. The positive class has its vectors distributed around
the centers (−2, 0.5) and (2,−0.5) with variance 0.8. The negative class has its vectors distributed around
the centers (−4.5, −1) and (4.5, 2) with variance 8. Figure 5 shows the distribution of the training
samples for the first dataset.

There are a total of 600 samples for the second synthetic dataset. Half of these samples are positive
samples, and the rest are negative ones. They are divided into three groups, respectively. Each group
of the samples is subject to Gaussian distribution. The centers for the positive samples are (0, 5), (−6,
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Table 1
Performance of different methods on the first synthetic dataset

Methods Acc TPR FPR EVL
Linear SVM 0.86 0.90 0.18 0.82
Polynomial SVM 0.87 0.95 0.20 0.85
Gaussian SVM 0.89 0.97 0.20 0.88
GC-SVM 0.91 0.97 0.15 0.89
G-FSVM 0.93 1 0.15 0.92

Table 1 lists the Accuracy, TPR, FPR and EVL of each kernel form of SVM, GC-SVM and G-FSVM.

Fig. 5. Distribution of the first synthetic dataset. Fig. 6. Distribution of the second synthetic dataset.

−4) and (6, −4), and the centers for the negative samples are (0, 7.5), (−4.5, 0.5) and (4.5, −0.5). The
variances for the positive and negative class are 1 and 5, individually. Figure 6 shows the distribution of
the training samples for the second dataset. The testing set has the same number and distribution as the
training set.

In this paper, EVL = TPR*
√

1− FPR is used to evaluate the performances of the different methods.
TPR is the ratio that the positive sample is correctly classified, and FPR is the ratio that the positive
sample is wrongly classified. This measurement places more emphasize on TPR than FPR, which is
reasonable in clustered MC detection; thus, the larger the EVL value is, the better the detection perfor-
mance. The performance of G-FSVM is compared to the three different kernel forms of SVM [29]: the
linear support vector machine (Linear SVM), polynomial support vector machine (Polynomial SVM),
and Gaussian support vector machine (Gaussian SVM). Furthermore, the performance of the proposed
method is also compared with GC-SVM, as presented in [21]. Tables 1 and 2 list the Accuracy, TPR,
FPR and EVL of each kernel form of SVM, GC-SVM and G-FSVM.

Tables 1 and 2 show that: (1) The accuracy of the G-FSVM is better than those of the SVM with
different kernels and GC-SVM, up to 2–4 percent. (2) The TPR of the G-FSVM is comparable with or
better than those of other methods. (3) The GC-SVM and G-FSVM have a lower FPR than the different
kernel SVMs. At 1 TPR, G-FSVM has a 0.15 and 0.22 FRP, which is about 5 percent less than those
of SVM with different kernels. (4) G-FSVM has a higher EVL than the others, up to 3 percent more
than GC-SVM. From these, it can be concluded that our proposed G-FSVM outperforms the different
traditional SVMs and GC-SVM for the EVL measurement.
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Table 2
Performance of different methods on the second synthetic dataset

Methods Acc TPR FPR EVL
Linear SVM 0.85 0.96 0.27 0.82
Polynomial SVM 0.85 0.98 0.28 0.83
Gaussian SVM 0.87 1 0.27 0.85
GC-SVM 0.87 0.98 0.23 0.86
G-FSVM 0.89 1 0.22 0.89

Table 2 lists the Accuracy, TPR, FPR and EVL of each kernel form of SVM, GC-SVM and G-FSVM.

Table 3
Feature values used in G-FSVM

Feature species Feature (dimension)
Gray feature 1. Contrast

2. Mean gray
3. Variance
4. Third (four)-order
5. Average gradient
6. Moment invariants

Geometry feature 1. Circularity
2. Degree of contraction
3. Spherical
4. Fourier descriptors

Texture feature 1. Mean energy diagram
2. Contrast
3. Variance of the energy map
4. Entropy
5. Energy

Table 3 lists 63 typical low-level features which were calculated for each region, such as gray values, geometry and texture
features, and so on.

Furthermore, the proposed method is less sensitive to the parameter selection than the SVM with
different kernels. The results of the G-FSVM and GC-SVM presented above is computed by the linear
kernels, and nearly the same performance can be calculated by the Gaussian and polynomial kernel.

3.2. Clustered microcalcification detection

The clustered MC detection data used in this paper comes from the DDSM dataset provided by the
U.S. South Florida State University [30]. Suspicious regions of MC were detected by a segmentation
algorithm that is described in [31]. The region sizes are variable, from 36*36 to 256*256, based on
the detected size of the suspicious regions. Altogether 1,064 suspicious regions were selected from 239
mammography (with 496 positive samples and 568 negative samples). Examples of typical images are
displayed in Fig. 7. Then, 63 typical low-level features were calculated for each region, such as gray
values, geometry and texture features, and so on, which are grouped and listed in Table 3.

It should be noted that: (1) In EM algorithm, the initial covariance is taken as the sample covariance,
and the initial means are estimated by fuzzy c-means method as usual. Additionally, the Gaussian com-
ponent number of the MC lesions and normal breast tissues samples both are 3, calculated by Eq. (5).
(2) The performance of the clustered MC detection data is the average results of five cross-validations.

Table 4 shows that: (1) G-FSVM has the highest accuracy (0.82). (2) The TPR of the G-FSVM is com-
parable to other methods. (3) The FPR of G-FSVM was nearly 10 percentage points less than GC-SVM,
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Table 4
Performance of different methods on clustered MC detection

Methods Acc TPR FPR EVL
Linear SVM 0.74 0.78 0.29 0.64
Polynomial SVM 0.75 0.79 0.29 0.67
Gaussian SVM 0.75 0.78 0.27 0.67
GC-SVM 0.77 0.78 0.23 0.68
G-FSVM 0.82 0.78 0.14 0.72

Table 4 lists the performance comparisons of some different kernel forms of SVM, GC-SVM and G-FSVM on clustered MC
detection.

Fig. 7. Breast tissue images.

which is much less than those of the different kernel SVMs. (4) As for the EVL measurement, G-FSVM
has better performance than all of the other aforementioned methods. It performed up to 4 percent better
than our previous method GC-SVM and even better than SVM with different kernels. From Table 4,
it can be similarly concluded that our proposed G-FSVM performed superiorly on the clustered MC
detection problem for the EVL measurement, which reduced the false positive rate significantly while
simultaneously maintaining the true positive rate.

4. Conclusion

This paper presents a novel integrated classification framework to detect clustered MC called grouped
Fuzzy SVM with EM-based partition of sample space (G-FSVM). The design of G-FSVM is aimed at
the diversity of data structures of MC lesions and the variability of normal breast tissues. Specifically,
the sample of the training space is considered to be generated from a GMM, with EM algorithm the
training input sets of the MC lesions and normal breast tissues are partitioned into several groups, re-
spectively. The partition of sample space based on EM maintains the structural diversity information
of the sample space, which provides as much information as possible for the sub space classifier. After
partition, each groups of the samples of MC lesions and normal breast tissues is combined to train a
suitable sub classifier, and the MC detection problem is decomposed into serial simple two-class classi-
fication sub problems, which successfully characterizes the diversified sub-patterns of the sample space.
Furthermore, to quantify the contribution of different samples, fuzzy SVM are employed as sub clas-
sifier of the final integrated classification. The fuzzy membership is defined by the probability of the
samples belonging to the subset of sample space by EM estimation, which can denote the importance of
the sample to the sub classifier. In this way, different samples with the proper levels of contribution are
trained to the integrated fuzzy SVM to make the classification more effective. The experimental results
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show that our integrated classification framework achieves a significant reduction in the false positive
detection rate while also preserving the true positive detection rate as compared to the different kernel
SVMs and the GC-SVM for the detection of clustered MC problem.

In future work, it would be interesting to integrate the grouped features to our proposed algorithm
for clustered MC detection, which may obtain more useful prior knowledge both from inhomogeneous
feature space and structural diversity sample space. We will also hope that G-FSVM can be applied to
many real-world applications.
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