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Abstract.
BACKGROUND: Multi-voxel pattern analysis (MVPA) provides a powerful tool to investigate neural mechanisms for various
cognitive processes under functional brain imaging. However, the high sensitivity of the MVPA method could bring about false
positive results, which has been overlooked by previous research.
OBJECTIVE: We investigated the potential for obtaining false positives from the MVPA method.
METHODS: We conducted MVPA on a public functional MRI dataset on the neural encoding of various object categories.
Different scenarios for pattern classification were involved by varying the number of voxels for each region of interest (ROI)
and the number of object categories.
RESULTS: The classification accuracy became higher with more voxels involved, and false positive results emerged for the
primary auditory cortex and even a white matter ROI, where object-related neural processing was not supposed to occur.
CONCLUSIONS: Our results imply that the classification accuracy obtained from MVPA may be inflated due to the high
sensitivity of the method. Therefore, we suggest involving control ROIs in future MVPA studies and comparing the classification
accuracy for a target ROI with that for a control ROI, instead of comparing the obtained accuracy with the chance-level accuracy.
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1. Introduction

Multi-voxel pattern analysis (MVPA) for functional MRI (fMRI) signals has been enjoying rapid
growth in the cognitive neuroscience research. Unlike the univariate analysis that makes use of infor-
mation from individual voxels or the mean activation for a region of interest (ROI), the MVPA method
exploits voxel-wise information in multivariate activation patterns. While the univariate analysis con-
cerns to what degree a neural area is engaged in a cognitive processing, the MVPA method takes a
further step in investigating neural encoding of cognitive representations and mental contents [1]. The
MVPA method assumes spatially distributed neural encoding in fMRI activity patterns, which is sup-
ported by the theory of neural population coding [2]. The MVPA method has been employed to uncover
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various neural processes and representations within a brain region [3–6], measuring “distances” between
different neural representations [7] and decoding dynamic mental states from brain activities [8–10].

Despite the advantages of the MVPA method, it is a complex procedure involving data preparation,
normalization, classifier training and testing, and statistical testing on the classification performance.
Some tutorial articles have provided general guidelines for implementing each step [11–13], but there
has been no unanimous opinion on how to specify some variables for the analysis, e.g., the size of a ROI,
the choice of classifiers, whether to use feature selection and data averaging approaches.

1.1. Factors that affect MVPA performance

A few studies have provided systematic analysis on how the combination of these variables affects the
classification performance. It has been shown that preprocessing approaches including data averaging
and feature selection can substantially improve classification accuracies [14]. The classification accuracy
increases for more voxels involved in a ROI and saturates for large ROI sizes [14,15]. Linear classifiers
perform better than nonlinear ones [14,15].

Nevertheless, previous studies have overlooked the potential for obtaining false positives from the
MVPA method and have not provided systematic analysis on this issue. The high sensitivity of the
MVPA method could be a “double-edged sword” that causes above-chance classification results for
neural activity patterns that are actually irrelevant to the cognitive processing in question. False positive
results will mislead researchers into concluding that an irrelevant neural area is involved in a certain
cognitive processing, which becomes a prominent issue considering the increasing popularity of the
MVPA method.

1.2. Present work

In this study, we investigated the potential for obtaining false positives from MVPA by analyzing a
public fMRI dataset under different classification scenarios. Given that many variables could affect the
classification performance, we focused on two variables – (a) the voxel count in a ROI, (b) the number
of categories – that concerned the dataset itself rather than the analysis procedure. Considering that there
were two dimensions for a dataset – a feature (i.e. voxel) dimension and a pattern dimension, variable
(a) concerned the number of features for a pattern, while variable (b) concerned the number of activity
patterns.

2. Methods

2.1. fMRI data

A public fMRI dataset was employed in this study. The dataset was from Haxby et al.’s work [6] on the
neural representation of faces and objects in the inferior temporal cortex, and was downloadable from
http://www.pymvpa.org/datadb/haxby2001.html. This dataset consisted of 6 subjects and 12 runs from
each subject. Subjects passively viewed grey-scale images of eight categories (scissors, bottle, shoe,
chair, house, cat, face and scramble pixels). These images were presented in 24s blocks separated by
rest periods.
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Fig. 1. Regions of interest (ROI). ROIs are 12 mm-spheres
centered at (−52, −53, −17) for the OTC ROI, (−45, −21,
7) for the Auditory ROI and (0, 0, 0) for the White matter
ROI. Coordinates on the z-axis of the MNI space are provided
above the corresponding horizontal brain sections. OTC: oc-
cipital-temporal cortex.

Fig. 2. Accuracies for classification across eight categories.
The results are averaged across 6 subjects. The solid hori-
zontal line indicates the chance-level accuracy (12.5%). The
dashed line indicates the critical value (14.58%) for bet-
ter-than-chance decoding based on the binomial test (a =
0.05), with 672 activation patterns involved for each subject.
Crosses (“×”) indicate false positive results.

2.2. fMRI data preprocessing

Imaging data were preprocessed by using SPM8 (Wellcome Trust Centre for Neuroimaging, Univer-
sity College London, UK). For each subject, the functional images were realigned and then coregistered
with the T1-weighted anatomical image. The anatomical image was segmented and the transformation
parameters to the MNI space were obtained, based on which the functional images were normalized to
the MNI space, and resliced to 3 ×3 × 3 mm3 in voxel size. Spatial smoothing was not applied in order
to maintain the spatial information across voxels. The anatomical image was missing from one subject,
for whose data the segmentation step was skipped and the realigned functional images were normalized
based on an MNI template image provided by SPM8.

2.3. ROI definition

Three ROIs were involved in this study: the left occipital-temporal cortex (OTC), the left primary
auditory cortex and a white matter region centered at (0, 0, 0) of the MNI space (Fig. 1). ROI cen-
ters for the OTC and the auditory cortex were based on the Harvard-Oxford Atlases (http://fsl.fmrib.
ox.ac.uk/fsl/fslwiki/Atlases). We employed the temporal-occipital part of the inferior temporal gyrus
and Heschl’s gyrus from the Harvard-Oxford Atlases and extracted the center for each anatomical clus-
ter by using the Marsbar toolbox [16]. The center for the OTC was located at (−52, −53, −17) and that
for the auditory cortex was located at (−45, −21, 7), based on which spherical ROIs with 12 mm radius
were created (involving 260 voxels). We used spherical ROIs instead of the anatomical regions to ensure
identical ROI sizes.

2.4. MVPA procedure

Pattern classification analysis was performed by using the PyMVPA toolbox [17]. Linear trends were
removed for each run of the functional imaging data. Data from the rest blocks were excluded from
analysis. The first two volumes for each block were removed to account for the hemodynamic delay [18],
leaving 672 image volumes in total (84 per category). Activation for each voxel was normalized to a
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mean of zero and standard deviation of one for each run. Data from each image volume corresponded
to a multivariate activity pattern. The normalized patterns were subjected to a linear SVM classifier in a
leave-one-run out cross-validation scheme.

2.5. Classification scenarios

In this study, we varied the following two variables for the MVPA method: (a) the voxel count for
a ROI, (b) the number of categories. Classification was performed on subsets of the voxels from each
ROI. Each subset included from 10% (26 voxels) to 100% (260 voxels) of the voxels for each ROI.
We randomly selected voxels within a ROI for each subset and this random selection was performed
100 times, from which average classification accuracies were obtained for each subset. For each subject,
linear regression was performed to obtain the slope between the classification accuracy and the num-
ber of voxels involved in classification. One-sample t-tests were used to assess whether the slope was
significantly above zero. The p values were corrected by the Bonferroni method.

The number of object categories was varied by using all the eight object categories, four categories
(face vs. house vs. cat vs. chair) or two categories (face vs. house). There were 672 patterns for the 8-way
classification, 336 for the 4-way classification and 168 for the binary classification from each subject.

Binomial tests were used to assess whether classification accuracies were significantly above chance.
The critical value for the binomial test at a significance level a = 0.05 (not corrected for multiple tests)
was 14.58% for the 8-way classification, 29.05% for the 4-way classification and 56.55% for the binary
classification. A similar procedure for the statistical testing was employed in Misaki et al.’s work [15].
Significant classification results would imply the presence of neural representations for object categories.

Precision and recall [19] were reported as statistical measures for the 8-way, 4-way and binary classifi-
cation scenarios, respectively. Precision measures the proportion of true positives among all the positive
classification outcomes, and perfect precision reflects the absence of false positives. Recall (also known
as sensitivity) measures the proportion of true positives among all the positives. Perfect recall reflects
the absence of false negatives.

3. Results

3.1. Classification between eight categories

Precision for the 8-way classification was 37.04% (10/27) and recall was 100% (10/10). The classifi-
cation accuracy for the OTC ROI was well above the critical value (14.58%) irrespective of the number
of voxels involved (Fig. 2), which was reflected in the perfect recall. For the Auditory ROI, however, all
the classification accuracies were also above the critical value, which were false positive results (10 false
positives). Classification accuracies for the white matter ROI also revealed false positive results when
the voxel count was equal to or above 104 (7 false positives).

The slope between the classification accuracy and the ROI size was significantly above zero for both
the OTC ROI (t (5) = 10.72, p < 0.001) and the Auditory ROI (t (5) = 3.79, p = 0.019), but not for
the white matter ROI (t (5) = 0.69, p > 0.1). The results indicated that classification accuracies became
higher when more voxels were involved in the OTC and Auditory ROIs.

3.2. Classification between four categories

Precision for the 4-way classification was 52.63% (10/19) and recall was 100% (10/10). For the OTC
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Fig. 3. Accuracies for classification across four categories.
The results are averaged across 6 subjects. The solid hori-
zontal line indicates the chance-level accuracy (25%). The
dashed line indicates the critical value (29.05%) for bet-
ter-than-chance decoding based on the binomial test (a =
0.05), with 336 activation patterns involved for each subject.
Crosses (“×”) indicate false positive results.

Fig. 4. Accuracies for binary classification (face vs. house).
The results are averaged across 6 subjects. The solid hori-
zontal line indicates the chance-level accuracy (50%). The
dashed line indicates the critical value (56.55%) for bet-
ter-than-chance decoding based on the binomial test (a =
0.05), with 168 activation patterns involved for each subject.
Crosses (“×”) indicate false positive results.

ROI, all the classification accuracies were well above the critical value of 29.05% (Fig. 3), demonstrating
perfect recall. Classification accuracies for the Auditory ROI were false positive if 52 or more voxels
were involved (9 false positives). Classification accuracies for the white matter ROI were all below the
critical value, showing no false positives.

The slope between the classification accuracy and the ROI size was significantly above zero for both
the OTC ROI (t (5) = 10.56, p < 0.001) and the Auditory ROI (t (5) = 3.22, p = 0.035), but not for the
white matter ROI (t (5) = 0.11, p > 0.1).

3.3. Classification between two categories

Precision for the binary classification was 58.82% (10/17) and recall was 100% (10/10). The critical
value for the binary classification was 56.55% according to the binomial test. Classification accuracies
were above this value for the OTC ROI regardless of the ROI size, and those for the white matter
ROI were all below the critical value (Fig. 4). Classification accuracies for the Auditory ROI, however,
exceeded the critical value if the ROI involved 104 or more voxels (7 false positives).

The slope between the classification accuracy and the ROI size was significantly above zero for both
the OTC ROI (t (5) = 6.18, p = 0.0025) and the Auditory ROI (t (5) = 7.71, p < 0.0001), but not for
the white matter ROI (t (5) = 1.52, p > 0.1). The more voxels were involved, the higher the accuracies
became for the OTC and Auditory ROIs, which was similar with the results for the 8-way and 4-way
classification.

3.4. Correction for multiple comparisons

It should be noted that statistical testing on the classification accuracies was not corrected for multiple
comparisons on the three ROIs, in order to reveal the false positives for investigating each ROI individ-
ually. Corrections for multiple comparisons can indeed control false positives and have been employed
by most if not all MVPA studies. In this section, we presented results with the Bonferroni correction.
The critical value became 15.33% for the 8-way classification, 30.65% for the 4-way classification and
58.33% for the binary classification, based on the binomial test (a = 0.017).
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For the 8-way classification, the false positive results for the White matter ROI were all controlled.
However, false positive results for the Auditory ROI still occurred if the voxel count was equal or above
52 (only one false positive eliminated). Precision for the 8-way classification was 52.63% (10/19). For
the 4-way classification, only one false positive result was removed for the Auditory ROI (voxel count =
52), and the precision was 55.56% (10/18). For the binary classification, three false positive results were
removed (voxel count = 104, 130 and 156), and the precision was 71.43% (10/14). Recall remained
100% for all the 8-way, 4-way and binary classification scenarios.

4. Discussion

In this study, we explored in detail how the ROI size and number of categories influenced the MVPA
performance for analyzing the functional imaging data. Especially we focused on the potential for ob-
taining false positive results from the control ROIs.

Our results showed that false negative results, i.e., classification accuracies were low where they were
expected to be high, were less of a concern compared with false positive results. All the classification
accuracies for the OTC ROI were well above the critical value even under the scenario where only
26 voxels were involved. The perfect recall for the 8-way, 4-way and binary classification scenarios
demonstrated high sensitivity of the MVPA method. However, this high sensitivity brought about false
positive results for the Auditory ROI and even the white matter ROI, where neural encoding for object
categories was not supposed to exist. The low precision implied that in this study a substantial proportion
of the significant classification results were false positives and did not reflect the underlying neural
representation correctly. We also demonstrated that corrections for multiple comparisons had limited
power to eliminate false positives from the MVPA results. We recommend that control ROIs, preferably
within the grey matter, should be involved in future MVPA studies. Only a few previous MVPA studies
have involved control ROIs in the analysis [3,20]. In order to account for the “inflated” classification
accuracy, we suggest that comparing the classification accuracy for a targeted ROI with that for a control
ROI was preferable to comparing with the chance-level accuracy.

Our results also demonstrated that classification accuracies increased when more voxels were involved
in the analysis. It suggested that the information brought by the extra voxels were exploited by the
classifier and thus contributed to the classification performance, which was consistent with previous
research [14]. For the Auditory ROI, false positive results emerged if more than 156 voxels were involved
in the analysis for all of the 8-way, 4-way and binary classification scenarios, even with the Bonferroni
correction for multiple comparisons. Many previous MVPA studies involved more than 150 voxels in
the analysis [6,10,18], which raised concerns for potential false positive results.

We also acknowledged several limitations of the current study. We investigated how the variables con-
cerning the dataset itself (the voxel count in a ROI and the number of categories) affected the occurrence
of false positives but kept the variables concerning the MVPA procedure fixed. The current work did
not involve data averaging or feature selection in the MVPA procedure, and employed a linear SVM for
pattern classification. Indeed different MVPA procedures have been shown to affect classification perfor-
mance [14,15] and thus may also affect the occurrence of false positives, which should be addressed in
future research. Furthermore, the number of patterns per category was also fixed in our investigation due
to the limited space of this paper. Future studies should address how these variables affect the potential
for obtaining false positive results.
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5. Conclusion

We demonstrated that the MVPA results were prone to false positives due to the high sensitivity of
the method. We therefore suggest that, instead of comparing the classification accuracy with the chance
level, future MVPA studies should compare the classification accuracy between a targeted ROI and a
corresponding control ROI.
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