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Abstract.
BACKGROUND: Realistic and real-time modeling and simulation of soft tissue deformation is a fundamental research issue
in the field of surgical simulation.
OBJECTIVE: In this paper, a novel cellular neural network approach is presented for modeling and simulation of soft tissue
deformation by combining neural dynamics of cellular neural network with ChainMail mechanism.
METHOD: The proposed method formulates the problem of elastic deformation into cellular neural network activities to avoid
the complex computation of elasticity. The local position adjustments of ChainMail are incorporated into the cellular neural
network as the local connectivity of cells, through which the dynamic behaviors of soft tissue deformation are transformed into
the neural dynamics of cellular neural network.
RESULTS: Experiments demonstrate that the proposed neural network approach is capable of modeling the soft tissues’
nonlinear deformation and typical mechanical behaviors.
CONCLUSIONS: The proposed method not only improves ChainMail’s linear deformation with the nonlinear characteristics
of neural dynamics but also enables the cellular neural network to follow the principle of continuum mechanics to simulate soft
tissue deformation.
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1. Introduction

Modeling and simulation of soft tissue deformation is a fundamental research issue in the development
of a surgical simulator. Surgical simulation requires realistic modeling of soft tissue deformation under
tool-tissue interactions and real-time visual and haptic feedbacks [1], but it is challenging to satisfy these
two conflicting requirements. Currently, the existing methods for soft tissue deformation can be grouped
into two main categories. One is devoted to the computational performance such as mass-spring model
(MSM) [2] for real-time soft tissue deformation, whereas the other is devoted to the physical realism
such as finite element method (FEM) [3] for accurate soft tissue deformation. The former is easy in
implementation and computationally efficient, but it cannot accurately reproduce the material properties
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of soft tissues. The latter allows accurate prediction of soft tissue deformation, but it is highly expensive
in computation. There have been various techniques studied for the improvement of the runtime compu-
tation of FEM. Matrix condensation [4] improves the runtime computation by reducing the full compu-
tation of a volumetric object to the surface nodes only; however, with this simplification the deformation
accuracy is significantly compromised. Pre-computation reduces the computational load by calculating
the solutions [5] or spatial derivatives [6] prior to the simulation; however, the pre-computation does
not permit changes on model topology during the simulation. Total Lagrangian explicit dynamics finite
element algorithm [6] reduces the computation through eliminating the iterative process of solving the
matrix equation; however, due to the use of explicit time integration, the simulation time step is restricted
to a small value for the solution to maintain stable. The boundary element method (BEM) [7] reduces
the computation by formulating the weak form of virtual work into a surface integral form, where only a
discretization of object’s boundary is required. However, it cannot handle the anisotropic and heteroge-
neous characteristics of soft tissues due to the homogeneous material assumption. Meshless method [8],
despite of being able to avoid the connectivity constraints from using mesh, requires more efforts in
computer programming, and it cannot directly model the object’s surface. Although the GPU (Graphics
Processing Unit) can be employed to facilitate the runtime computation from the GPU parallel comput-
ing [9], this technique is hardware-dependent and it does not fundamentally address the computational
problem.

As an alternative to the aforementioned methods, ChainMail is a modeling method for real-time mod-
eling and simulation of soft tissue deformation. It was first proposed by Gibson in 1997, named the 3D
ChainMail [10]. In this method, each chain element (mass point) enforces a geometric region setting
the free-moving distances of each of its neighbouring chain elements. The ChainMail has advantages
in computation and is stable in numerical iteration. Although various studies have been reported for
improvement of the ChainMail method [11,12], it is still limited to linear deformation of soft tissues.

Neural network has also received attention for simulation of soft tissue deformation, given its fast
computational advantage, which would be able to achieve the real-time computational performance re-
quired by surgical simulation. Zhong et al. reported a cellular neural network model [13] and a Hopfield
neural network model [14] for modeling of soft tissue deformation; however, these neural networks
are constructed based on the physical heat conduction process, rather than continuum mechanics for
deformation.

In this paper, a new ChainMail based neural dynamics approach for modeling of soft tissue defor-
mation is presented. It combines the ChainMail mechanism with nonlinear neural dynamics for the soft
tissues’ nonlinear deformation and typical mechanical behaviors. It endows the principle of continuum
mechanics to the neural network for soft tissue simulation by formulating the local connectivity of cells
in the cellular neural network as the local position adjustments of ChainMail. It also improves Chain-
Mail linear deformation with nonlinear neural dynamics. Experiments, simulations and comparisons
have been performed to comprehensively evaluate the performance of the proposed method.

2. Model design

The proposed method employs the cellular neural network (CNN), which is a local-interconnected
array-computing structure [15]. The neuron in the CNN is called cell, which is a nonlinear dynamic
processing unit consisting of capacitors, resistors and current sources of linear and nonlinear types.
Cells are locally connected and interact only with their nearest neighbors [16]; cells that are not directly
connected affect each other indirectly via the global propagation effect of CNN [17].
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Fig. 1. A CNN on an irregular grid: the spatial positions of Pi and Pj are occupied by cells C(i) and C(j).

The CNN can be applied to any type of geometric grid of any dimension. Consider a geometric grid
shown in Fig. 1, points i and j at positions Pi and Pj are occupied by cells C (i) and C (j), respectively.

To describe the interaction range between cells, the neighborhood Nr (i) of cell C (i) is firstly defined
by

Nr (i) = {C (j) |edge (C (i) , C (j)) 6 r} (1)

where r is a positive integer number denoting the number of edges between cells C (i) and C (j).
The dynamic behaviors of cell C (i) are governed by the following equations

C
dvxi (t)

dt
=− 1

Rx
vxi (t) +

∑
C(j)∈Nr(i)

A (i; j) vyj (t) +
∑

C(j)∈Nr(i)

B (i; j) vuj + Ii (2)

vyi (t) =
1

2
(|vxi (t) +K| − |vxi (t)−K|) ,K > 1; |vxi (0)| 6 K; |vui| 6 K (3)

where C is the cell capacitance, which can be set to 1 for simplicity; Rx is the cell resistance; Ii is the
current source; r is 1 in our case;A (i; j) is the feedback template which defines the interactions between
neighboring cells, whereas B (i; j) is the control template which characterizes the influence of input on
the cell; vui (t), vxi (t) and vyi (t) are the cell input, state and output at time t; vyi (t) is a nonlinear
sigmoid function of vxi (t), and it is bounded by a constant K.

Without cell input vui, Eq. (2) is reduced to an autonomous CNN [18] whose governing equation is
given by

dvxi (t)

dt
= − 1

Rx
vxi (t) +

∑
C(j)∈Nr(i)

A (i; j) vyj (t) + Ii (4)

3. Model construction

3.1. ChainMail formulation of local connectivity of cells

The CNN and ChainMail share common characteristics. Under the given initial conditions and ex-
ternal inputs, the dynamic behaviors of the proposed CNN are described by the local connectivity of
cells. Similarly, the behaviors of ChainMail are also described by the local position adjustments under
the same conditions. Further, similar to the CNN output, which is bounded by the constant K, the move-
ment of a chain element is bounded by the maximum extension and minimum compression lengths. The
position of a chain element will be adjusted locally only if the two lengths are violated, to keep the chain
link between the two chain elements within the geometric bounding region. Therefore, in this paper,
the local connectivity of cells in the CNN is formulated according to the local position adjustments of
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Fig. 2. Position adjustments ∆Pi and ∆Pj are applied to chain elements’ position Pi and Pj to adjust the current length
between the two chain elements back to the (a) minimum compression length lmin

ij and (b) maximum extension length lmax
ij .

ChainMail. From the perspective of continuum mechanics of elasticity, the ChainMail can be viewed
as a spring system in which a spring’s length is bounded by its minimum compression and maximum
extension lengths. Accordingly, the formulation of CNN’s local connectivity as the ChainMail local po-
sition adjustments enables the CNN dynamics to follow the principle of continuum mechanics for soft
tissue deformation.

Traditional ChainMail method [10,11] defines the compression and extension lengths with respect to
(w.r.t) the coordinate axes x, y and z individually to regulate the movement of chain elements. However,
unlike the traditional ChainMail method, it is straightforward to set the minimum and maximum limiting
lengths w.r.t the length of the chain link connecting the two chain elements at the rest state, which is
similar to a spring system. Further, a material parameter α is introduced for setting the minimum and
maximum limiting lengths, and its value is set according to the spring stiffness k.

Define the initial length of the chain link connecting chain elements i and j to be l0ij . The minimum
compression length lmin

ij and maximum extension length lmax
ij can be expressed as

lmin
ij = (1− α) l0ij

(5)
lmax
ij = (1 + α) l0ij

Hence, the current length lij between the current positions of chain elements i and j is bounded by

lmin
ij 6 lij 6 lmax

ij (6)
Define the position adjustments for chain elements i and j to be ∆Pi and ∆Pj . As illustrated in Fig. 2,

position adjustments are applied to both chain elements to adjust the current length lij back to lmin
ij or

lmax
ij if the current length is less than the minimum compression length or larger than the maximum

extension length. The adjustments of lmax
ij are expressed by Eq. (7). The adjustments of lmin

ij can be
expressed similarly by substituting lmax

ij with lmin
ij into Eq. (7).

∆Pi =
1

2

(
||Pj −Pi|| − lmax

ij

) Pj −Pi

||Pj −Pi|| (7)
∆Pj =−1

2

(
||Pj −Pi|| − lmax

ij

) Pj − Pi

||Pj −Pi||
For the sake of conciseness, consider a simple case where a chain element is connected with four

neighbors as illustrated in Fig. 3.
The net adjustment for chain element i can be expressed by the sum of the adjustments applied to Pi∑

∆Pi = µ1P
1
j + µ2P

2
j + µ3P

3
j + µ4P

4
j − (µ1 + µ2 + µ3 + µ4)Pi (8)

where

µn =
1

2


(
un − ln,max

ij

)
un

δmax
n +

(
un − ln,min

ij

)
un

δmin
n

 ;n = 1, 2, 3, 4 (9)
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Fig. 3. A grid with four local connections: chain element i at position Pi is connected with four neighboring chain elements at
positions P1

j , P2
j , P3

j and P4
j with distances in-between denoted by u1, u2, u3 and u4, respectively.

where

un = ||Pn
j −Pi||; δmax

n =


1; if

(
un > ln,max

ij

)
0; if

(
un 6 ln,max

ij

) ; δmin
n =


1; if

(
un < ln,min

ij

)
0; if

(
un > ln,min

ij

) (10)

By associating the cell state vxi (t) with the chain element’s position Pi, the feedback template A of
the proposed CNN can be expressed as

A =

 0 µ2 0
µ3

1
Rx
− (µ1 + µ2 + µ3 + µ4) µ1

0 µ4 0

 (11)

In case that chain element i is connected to any number of neighboring chain elements, the net adjust-
ment for chain element i can be expressed by the sum of the adjustments applied to Pi, i.e.∑

∆Pi =
∑

Pj∈N(Pi)

µijPj −
∑

Pj∈N(Pi)

µijPi (12)

where N (Pi) is the set of neighboring chain elements of chain element i, and µij is given by

µij =
1

2


(
uij − lmax

ij

)
uij

δmax
ij +

(
uij − lmin

ij

)
uij

δmin
ij

 (13)

where

uij = ||Pj −Pi||; δmax
ij =


1; if

(
uij > lmax

ij

)
0; if

(
uij 6 lmax

ij

) ; δmin
ij =


1; if

(
uij < lmin

ij

)
0; if

(
uij > lmin

ij

) (14)

Similar to Eq. (11), the feedback template A can be written as

A (i; j) = µij
(15)

A (i; i) =
1

Rx
−

∑
C(j)∈Nr(i)

µij
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Fig. 4. Deformations of a plane by (a) the proposed CNN and (b) traditional ChainMail method: the deformation produced by
the proposed CNN shows nonlinear behaviors whereas it shows only linear behaviors with the traditional ChainMail.

Fig. 5. (a) Nonlinear force-displacement, (b) hysteresis and (c) stress relaxation observed from the proposed method.

3.2. CNN current source, initial and boundary conditions

When a soft tissue is deformed, there is a displacement experienced at the region of contact. Hence,
the current source Ii is set to the input displacement at the contact point i, whereas its value is set to
zero at other points. The initial condition for the CNN is the positions of chain elements at the rest state.
The boundary condition in the proposed method is the Dirichlet boundary condition which enforces
fixed positions to the related chain elements of the solution domain at all times, and it is achieved by
employing fixed-state cells.
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Fig. 6. Interactive deformation of the human liver model: (a) the interactive simulation system; (b) the initial state of the
volumetric liver model; (c) the deformation by the proposed CNN; (d) the deformation by the traditional ChainMail.

4. Performance evaluation

The proposed CNN has been implemented into a prototype surgical simulation system for soft tis-
sue deformation. Trials have been conducted with the proposed method to evaluate its performance in
terms of soft tissues’ nonlinear deformation and typical mechanical behaviors. Figure 4 compares the
deformations of a rectangular plane (21 × 21 nodes) between the proposed CNN and traditional Chain-
Mail method. It can be seen that the deformation produced by the proposed CNN in Fig. 4a behaves
nonlinearly while the traditional ChainMail in Fig. 4b shows a linear deformation of pyramid shape.

Trials have also been conducted to verify the proposed CNN against the soft tissues’ typical mechani-
cal behaviors, such as the nonlinear force-displacement relationship, hysteresis and stress relaxation [19].
Nonlinear force-displacement relationship was examined using a compression test with a displacement
occurred at the contact point. Figure 5a demonstrates the nonlinear force-displacement relationship. Hys-
teresis was examined using the same compression test for loading, while the unloading was achieved by
resorting the chain links between chain elements to their initial lengths. It can be seen from Fig. 5b that
the variations of force w.r.t displacement followed two distinct paths during loading and unloading, this
behavior is similar to the hysteresis effect measured from living biological tissues [19]. Stress relaxation
was also examined by maintaining a constant displacement at the contact point. As shown in Fig. 5c, the
internal force decreased asymptotically towards a minimum value. This behavior is in agreement with
the stress relaxation observed from real soft tissues [19].

The proposed CNN has been integrated into a prototype surgical simulation for interactive deformation
of virtual human organs with haptic feedback. Figure 6 illustrates the prototype surgical simulation
system with a comparison of deformations modeled by the proposed CNN and traditional ChainMail.
The volumetric human liver model contains 5762 mass points and 20255 tetrahedrons and it is deformed
via a virtual haptic probe. It can be seen that the proposed CNN generates a better deformation shape
than the ChainMail method.
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5. Conclusion and future work

In this paper, a new ChainMail based neural dynamics approach is presented for modeling and simula-
tion of soft tissue deformation for surgical simulation. It models the nonlinear deformation of soft tissues
via the nonlinear neural dynamics of CNN through the formulation of local connectivity of cells as the
local position adjustments of ChainMail. Results demonstrate that the proposed method can produce
soft tissues’ nonlinear deformation as well as the typical mechanical behaviors. Future research will be
devoted to two aspects for enhancement of the proposed method. One is the scalability. Algorithms will
be developed to map multiple chain elements to one single neural cell to expand the proposed method to
accommodate the increase of chain elements. The other is material parameter determination. Optimiza-
tion algorithms will be developed to determine optimal material parameters for the nonlinear properties
of soft tissues to further improve the modeling realism.
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