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Abstract. A recent application in machine learning has introduced a novel approach, complemented by big data sources, aimed at
providing precise estimates for small geographical areas. This method employs a dual strategy: (a) hybrid estimation, involving
the integration of big data sources with imputed values derived from K nearest neighbours (KNN) to address missing target
variable values from the big data source; and (b) calibration of the collective sum of small area estimates to an independent yet
efficient national total. Evaluating its efficacy using simulated data from the 2016 Australian population census, the calibrated
KNN (CKNN) method demonstrated superior performance compared to the Fay-Herriot method based on area-level covariates.
This paper enhances the comparative analysis by contrasting the CKNN method with a hierarchical Bayes method using the
logit-normal model (LN) relevant for binary data. Broadly speaking, the LN method can be viewed as the Bayesian equivalent
of Battese-Harter-Fuller (BHF) method, which incorporates unit-level covariates. Our results demonstrate the CKNN method’s
superiority over the LN method. However, the application of hybrid estimation to the LN method significantly diminishes this
superiority. Although CKNN estimates maintain better precision, they are not as accurate as the estimates from the hybridized LN
method.
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1. Introduction

The estimation of variables in small geographic ar-
eas, known as small area estimation (SAE), is recog-
nized as a crucial yet inadequately addressed require-
ment by national statistical offices (NSOs) and is partic-
ularly pertinent to the needs of statistical users. While
“small areas” typically refers to sub-national or local
geographical regions, it is important to note that the
same principles and methodologies for national esti-
mates are equally applicable to the estimation for small
population groups.

∗Corresponding author: E-mail: stattam@gmail.com.

The unmet demand for SAE arises due to the inherent
limitations of direct estimates for small areas, primarily
stemming from the challenges associated with small, or
non-existent sample sizes, leading to substantial sam-
pling errors. To overcome this hurdle, NSOs employ a
“model-based approach,” utilizing statistical models to
leverage information and enhance estimation accuracy
across areas [1,2], over time [3], or resort to synthetic
estimation techniques [4]. The Fay and Herriot (FH)
and Battese, Harper and Fuller (BHF) models, which
use area-level and unit-level covariates respectively, are
commonly used by NSOs and are considered to be the
industry-standards for SAE.

For a comprehensive understanding of the various
methodologies employed in small area estimation, one
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may refer to the extensive literature, including [5,6,7,8,
9,10,11,12,13,14].

The FH model enhances the precision of SAE by
“borrowing” strength across areas, employing what is
known as “linking” models – refer to, for instance,
equation 4.2.1 of [14]. This improvement is achieved by
assuming shared regression coefficients in the linking
model for area totals. By amalgamating the sampling
error model (equation 4.2.3 of [14]) with the linking
model, a mixed linear model (equation 4.2.5 of [14]) for
the survey estimates (which are appropriately weighted)
of the areas is derived. Subsequently, model parame-
ters are estimated through this combined framework.
Empirical Best Linear Unbiased Predictors (EBLUPs)
for the small areas are then computed by plugging the
estimated parameters into the mixed linear model, along
with the area-level covariates.

The BHF builds upon the aforementioned concept by
employing a mixed linear model, focusing not on the
survey estimates of the areas, but on the survey units
directly. An essential condition for implementing the
BHF model is the presence of unit-level covariates, not
only for the observed units in the survey sample but for
the entire population. Through simulation studies [15,
16], it has been demonstrated that SAEs derived from
BHF models surpass FH estimates in terms of precision
and are less susceptible to bias. This superiority arises
from the more granular information available in unit-
level covariates, providing more informative estimation
compared to the FH models operating at the area level.

In this paper, we employ the LN model instead of the
BHF model for comparison. The LN model can be con-
sidered as the Bayesian equivalent to the BHF model
as it also uses unit covariates for prediction, offering
a compatible framework for our analysis. The princi-
pal reason for choosing the LN model instead of the
BHF model is that, using Monte Carlo Markov Chain
(MCMC) for computations, the LN model facilitates
more efficient number-crunching compared to the BHF
model.

The subsequent Sections of this paper are organized
as follows. Section 2 provides an overview of the cali-
brated KNN (CKNN) methodology, elucidating its ap-
plication in generating small area estimates and the as-
sociated computation of mean squared errors (MSE).
Moving forward, Section 3 summarises the outcomes of
a comparative analysis between CKNN estimates and
those derived from the FH method. Section 4 reports
the findings of a parallel assessment, contrasting CKNN
estimates against both LN estimates and hybridized
LN estimates. Our concluding remarks are presented in
Section 5.

2. Harnessing big data for SAE

As big data gains prominence [17,18], the question
arises: Can we unlock its potential for SAE? The re-
sponse is in the affirmative, as demonstrated in [19].
Addressing the well-recognized under-coverage bias
associated with relying solely on big data for SAE, [19]
mitigates this limitation by mass imputing the miss-
ing data using survey data as donors and counters the
constraints posed by the small sample size in SAE by
complementing the imputed data with big data. This
symbiotic relationship between the two data sources
underscores their complementarity in achieving robust
SAE outcomes.

In what follows, we provide a bird’s eye view of the
methodology used in [19] for SAE with big data.

2.1. Notation and the underlying idea

Suppose we have a finite population, U = {1, . . .,
N} comprising N units with the following values, xi
and yi, ∀i ∈ U , where xi is a vector of auxiliary vari-
ables and is fully observed, and yi is the variable of
interest. We assume that U = B ∪ C, where B, of size
NB , comprises the labels of the big data set and C, of
size NC , is the complement of B. We assume further
that yi,∀i ∈ B, are observed without error. Finally, we
also assume that we have a probability sample, A ⊂ U ,
with known design weights of the sample, di, ∀i ∈ A.
Thus we have the following data available to the ana-
lyst for SAE: (a) (xi, yi) for i ∈ B; (b) (di, xi, yi) for
i ∈ A; (c) xi∀i ∈ C and (d) information on where these
units are located in the small area. Finally, let δi denote
the big data inclusion indicator which is 1 if unit i ∈ B
and 0 otherwise. We assume that (e) δi, ∀i ∈ A, is fully
observed. Note that δi = 1 is observed for ∀i ∈ B. In
addition, note that the case when A is subject to nonre-
sponse and δi not fully observed was addressed in [20]
and [21] respectively and will not be repeated here.

Suppose further that U = U1 ∪ . . . Um ∪ . . . ∪
UM , B = B1 ∪ . . . Bm ∪ . . . ∪ BM and C = C1 ∪
. . . Cm ∪ . . .∪CM and A = A1 ∪ . . . Am ∪ . . .∪AM ,
where Um = Bm ∪ Cm and m denotes the mth small
area. For SAE, we are interested to estimate Tm =∑
i∈Um

yi,m = 1, . . . ,M . As Tm =
∑
i∈Bm

yi +∑
i∈Am\Bm

yi +
∑
i∈Cm\Am

yi = TBm
+ TAm\Bm

+
TCm\Am

, and because TBm
and TAm\Bm

are fully ob-
served, the SAE problem boils down to estimating
TCm\Am

, using the information available from (a) to
(e) above. Let T̂Cm\Am

and T̂m denote the estimate of
TCm\Am

and Tm respectively. Then
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T̂m = TBm
+ TAm\Bm

+ T̂Cm\Am
.

Denote the population total by T =
∑M
m=1 Tm.

[21] showed that the data integrator, perhaps better re-
ferred to as a hybrid estimator, T̂P =

∑
i∈U δiyi +

NC

∑
i∈A

di(1−δi)yi∑
i∈A

di(1−δi) , is equivalent to a generalised regres-

sion estimator and hence is approximately designed un-
biased They also showed that when WB = NB/N is
sufficiently large, T̂P is a more efficient estimator than
T̂A = N

∑
i∈A yi/n, where NB , N and n denote the

size of the Big Data, population and sample respec-
tively. As T̂P is an efficient estimator of the popula-
tion total, [19] uses it to calibrate the imputes for the
missing values in C\A, using a KNN algorithm with
the donors coming from D = A ∩ C. In other words,
T̂ =

∑M
m=1 T̂.m = T̂P , and the methodology is called

the CKNN algorithm.

2.2. The KNN algorithm

For a description of the KNN algorithm, refer to [19]
and the references therein. To ascertain the optimum
number of nearest neighbours, K the number, p, and
selection of the covariates in x to be used in finding
the nearest neighbours, the following two steps are ap-
plied [19]: (a) a grid search on all possible combina-
tions of K = 1, . . . , 20 and all combinations of the co-
variates from p = 1, . . . ,dim(x); and (b) a 5-fold cross
validation methodology. The objective is to identify the
combination of K, p and the specific p covariates that
minimises the aggregated sum of absolute prediction
errors across all the small areas from m = 1, . . . ,M .

Furthermore, [19] utilizes the HasD distance met-
ric [19,22] to find the nearest neighbours in D, i.e. ex-
tending beyond the boundaries of the specific area to
encompass the entire donor pool. This approach ensures
a thorough exploration of potential matches, transcend-
ing the limitations of a localized focus. Conceptually,
by sharing the donors across all areas in D, this mirrors
the assumption of shared regression coefficients used
in the FH and BHF models. Finally, the HasD metric,
which can handle continuous and multinomial data,
is bounded between 0 and p and offers the important
characteristic of being scale invariant.

2.3. The CKNN algorithm

Let the subscript mi denote the ith unobserved unit
in Em = Cm\Dm and ymi(j), j = 1, . . . ,K be
the jth nearest neighbour of mi, where ymi(j) ∈ D.

Denoting T̂Em(j) by
∑
mi∈Em

ymi(j), an estimate for
the population total in area m from the jth donors
is given by T̂m(j) = TBm

+ TDm
+ T̂Em(j). In

KNN, T̂KNNm = 1
K

∑K
j=1 T̂m(j). In CKNN, we define

T̂CKNNm =
∑K
j=1 wj T̂m(j), where wj , j = 1, . . . ,K

is chosen to minimise
∑K
j=1

1
K (Kwj − 1)2 subject

to the following conditions: (a)
∑K
j=1 wj = 1; and (b)∑M

m=1 T̂CKNNm =T̂p. The Chi-square minimisation cri-
teria follows those of [23] and ensures that each wj ,
j = 1, . . ., K, is as close as possible to 1

K whilst condi-
tion (b) ensures that entire sum of the estimates across
all the areas is calibrated to the independent estimate
of the overall population total, T̂p. To simply notation,
we shall henceforth use T̂m to denote T̂CKNNm, and re-
fer T̂m as a CKNN estimate or a hybrid estimate sig-
nalling its combination of big data and survey data.
The wj , j = 1, . . . ,K are also referred to as calibration
weights.

For an analytic solution for the calibration weights,
the reader is referred to the Lemma in [19].

2.4. Estimating the MSE of T̂m

The MSE of T̂m can be decomposed into variance
and a squared bias components as follows:

MSE(T̂m) = E(T̂m − Tm)2

= E
{
T̂Em

− E(T̂Em
)
}2

+
{
E(T̂Em

)− TEm

}2

= E
{
T̂Em

− E(T̂Em
)
}2

+ E2(T̂Em
)e2m

where em =
{
E(T̂Em

)− TEm

}
/E(T̂Em

). The error,

E(T̂Em) − TEm , is due to the use of nearest neigh-
bours to impute the missing values in Em and is the
imputation bias. Hence, em is the relative imputation
bias.

The variance component, E
{
T̂Em

− E(T̂Em
)
}2

,
does not have a closed form, but can be estimated using
the “fixed – K asymptotic bootstrap” of [19,24]. How
many bootstrap samples are required? According to [19,
24], to have the coefficient of variation of the “width”
of the bootstrap confidence interval of about 7%, the
number is 500.

To estimate the relative imputation error, the follow-
ing steps are used [19]: (a) sequentially, each observed
data point in D undergoes imputation using the CKNN
algorithm as outlined in Section 2.3. This entails (a1)
using HasD to find the K nearest neighbours for each
simulated missing data point in D; (a2) applying cal-
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ibration weights to the K nearest neighbours for each
simulated missing data point to calculate the imputed
value; (b) the imputation error is calculated by summing
the difference between the imputed value and the actual
value of the data points in D; (c) êm is calculated from
dividing the imputation error derived in step (b) by the
sum of the imputed values in D. Finally, E2(T̂Em

)e2m
is estimated by T̂ 2

mê
2
m.

3. Performance of the CKNN algorithm

To illustrate the methods, [19] used the 1% public use
micro data file from the 2016 Australian Census (Aus-
tralian Bureau of Statistics, 2016) (available at https://
www.abs.gov.au/statistics/microdata-tablebuilder/log-
your-accounts to authorised users) to simulate the popu-
lation, big data, and the probability sample. The variable
of interest for SAE is the number of volunteers for 56
small areas as defined geographically by the Australian
Bureau of Statistics.

The population, U, has 173,021 personal records.
With 56 areas, there is an average of 3,089 personal
records per area. Among the 173, 021 personal records,
there was a total of 35,742 volunteers, giving an over-
all average volunteer participation rate of about 21%.
The number of volunteers ranged between 46 to 1,236
amongst the 56 small areas, and the volunteer partici-
pation rate varies between 11% to 31%.

From U , a simple random sample of 1,730 (i.e. 1% of
U ) of the personal records and a missing-not-at-random
big data sample of 103,438 personal records (i.e. 60%
of U ) and 18,548 volunteers (52% of all volunteers)
were created. For further details on how these samples
were created, refer to [19].

Covariates available at the unit record level for com-
putation of the HaD metric are: labour force status (em-
ployed, unemployed and not in the labour force), birth
region (6 groups), age (7 broad groups) and sex (male,
female).

Using the methods outlined in Section 2.2, [19] found
that the optimum combination of the covariates is K =
5, p = 3 comprising the labour force status, birth region
and age variables.

In addition, T̂p was 36,312 as compared with the
actual number of 35,742 volunteers.

The actual and CKNN estimates, denoted by T̂HY
m

their root MSEs, denoted by RTMŜEHY, for the 56
areas are tabulated in Table 1, where the superscript HY

denotes hybrid estimates The CKNN estimates have an
average absolute estimation error of 57, average relative

root MSE of 11% and an estimated coverage rate of
93% against a nominal coverage rate of 95%.

To assess the performance of hybrid (CKNN) esti-
mates in comparison to FH estimates across the 56 ar-
eas, both estimates, accompanied by their respective
error bars, are depicted against the actual number of
volunteers in Fig. 1. In this representation, the black
dots denote the hybrid or FH estimates, and the vertical
lines denote the 95% confidence interval. The proximity
of the black dots to the red line indicates the accuracy
of the estimates relative to the true values. Additionally,
shorter vertical lines signify greater precision in the
estimates.

As observed in Fig. 1, [19] concluded from this anal-
ysis that CKNN estimates outperform FH estimates.
Specifically, the CKNN estimates exhibit better accu-
racy (closeness to the red line) and reduced uncertainty
(shorter vertical lines) compared to their FH counter-
parts.

4. Levelling the playing field

The juxtaposition of CKNN estimates with FH esti-
mates, as illustrated in Fig. 1, presents an inequitable
comparison for two key reasons. Firstly, CKNN esti-
mates are derived from unit-level covariates, while FH
estimates are based on area-level covariates. This inher-
ent difference in the granularity of covariate informa-
tion disadvantages the FH estimates in the performance
comparison.

Secondly, the CKNN estimates employ a hybrid ap-
proach by integrating big data, survey data and pre-
dicted missing data (due to the under-coverage of big
data) to generate SAEs. In contrast, whilst they can be
hybridized as shown by the hybridized LN estimates
below, FH estimates do not currently adopt a hybrid
estimation strategy, relying solely on the survey data
without taking advantage of the information available
from big data.

Given that, at the unit level, volunteer status is a bi-
nary variable, the application of the BHF model, de-
signed for continuous variables, is not suitable. In their
book, [14] delineate an Empirical Best Linear Unbi-
ased Prediction (EBLUP) approach (Section 9.5.2) and
a Hierarchical Bayes (HB) approach (Section 10.13.2)
specifically tailored for binary variables. The EBLUP
approach is also extensively discussed in [26]. How-
ever, for the purposes of this paper, we opted for the
LN model under the HB approach, because it can be
considered the Bayesian equivalent of the BHF model,
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Table 1
Estimates for Tm, T̂HY

m , RTMŜEHYT̂ LN1
m , ŜDLN1, T̂ LN2

m and ŜDLN2

Area Tm T̂HY
m RTMŜEHY T̂ LN1

m ŜDLN1 T̂ LN2
m ŜDLN2

1 910 811 104 832 182 828 120
2 426 401 55 493 136 444 82
3 728 641 83 632 151 788 127
4 1014 879 111 879 201 949 143
5 839 676∗ 78 626 161 694 111
6 383 404 59 320 103 350 72
7 529 468 62 524 130 521 91
8 730 741 88 700 160 773 113
9 447 387 55 411 122 352 78
10 433 364 43 350 101 398 74
11 544 630 93 506 161 519 111
12 751 733 87 773 207 730 124
13 1236 1119 122 1083 232 1197 148
14 650 636 87 684 179 665 117
15 350 400 62 423 123 359 80
16 499 521 64 552 143 495 80
17 312 392 58 449 128 371 81
18 768 701 88 904 181 842 108
19 507 436 52 535 122 475 74
20 857 714 91 1041 202 834 121
21 1026 990 119 925 207 1005 139
22 732 698 73 653 152 790 117
23 706 708 86 854 203 806 140
24 584 646 91 723 170 561 105
25 412 462 62 644 158 548 98
26 800 813 101 708 176 779 125
27 896 968 121 1142 218 980 148
28 794 859 110 777 184 906 146
29 391 438 56 287 97 372 74
30 607 596 76 526 128 602 101
31 632 698 90 615 144 664 107
32 543 561 65 435 120 635 114
33 920 861 95 670 165 806 112
34 445 457 65 340 102 408 86
35 670 641 84 493 128 676 107
36 685 798 110 708 172 677 117
37 741 739 94 770 174 741 115
38 387 406 56 383 116 379 81
39 515 563 78 571 148 586 110
40 611 692 87 634 161 692 112
41 589 639 37 460 120 609 48
42 459 504 32 358 103 452 36
43 898 970 54 766 176 929 62
44 570 657* 43 499 134 631 59
45 633 690 41 630 160 645 52
46 847 904 46 705 166 820 49
47 702 770 46 757 168 756 64
48 681 740 44 639 166 708 57
49 763 844 48 720 169 798 56
50 716 774 44 735 185 758 66
51 548 637∗ 40 522 130 607 44
52 359 390 23 195 67 368 33
53 853 948 59 736 179 888 66
54 289 324 22 250 78 305 30
55 779 818 43 572 148 792 59
56 46 55∗ 4 44∗ 16 50 6

Total 35,742 36,312 − 34,158 − 36316
Average absolute estimation error − 57 − 89 − 42 −
Average relative root mean squared error − − 11% − 26% − 15%
Estimated coverage rate − 93% − 98% − 100% −

Notes: (1) * denotes Tm is not within T̂HY
m ± 1.96RTMSEHY, or T̂ I

m not within T̂ I
m ± 1.96SD̂I i.e 95% Credible interval, I = LN1, LN2 where

Tm denotes the actual size of the small area m, the superscriptsHY,LN1 and LN2 represent hybrid, logit-normal and hybridized logit-normal estimates
respectively, and RTMSE and SD represent root mean squared error and standard deviation respectively. (2) Estimated coverage rate = (# of true
counts within the 95% confidence interval) divided by 56. The coverage rate of 98% and 100% are not statistically significantly different (95%
confidence) from the nominal coverage rate of 95%.
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Fig. 1. Plot of T̂m, T̂ FH
m and their 95% error bars against Tm. Notes: (1) Data are sourced from Table 1 (left plot) and [19] (right plot). Error band

is defined as T̂ I
m ± 1.96

√
MŜE(T̂ I

m) where I = HY or FH. (2) Tm denotes the actual size of the small area m, the superscriptHY represent
hybrid estimate.

it is applicable for binary response variables and soft-
ware exists to facilitate with number crunching for HB
models.

From a computational standpoint, the preference for
the Hierarchical Bayes (HB) approach is substantiated
by the availability of version 0.7.7 the R package, mcm-
csae in the Comprehensive R Archive Network. De-
veloped by Dr. HJ Boonstra of the Central Bureau of
Statistics in the Netherlands. This package provides
pre-built MCMC methods. These methods facilitate the
generation of samples from the posterior distribution
of SAE estimates, accommodating both continuous and
binary target variables. With mcmcsae, users can ef-
ficiently compute posterior mean (and quantile) esti-
mates along with their credible intervals, thus simplify-
ing one’s computational burden.

For the 1% 2016 Census data, we use the LN model
(equation 10.11.7 of [14]) for the volunteer data as
follows:

(i) ymi
|pmi

∼ ind Bernoulli (pmi
)

(ii) Logit (pmi
) = xTmi

β + νm with νm ∼ indN
(0, σ2

υ)
(iii) β and σ2

υ are mutually independent with f(β) ∝
1 and σ−2υ ∼ G(a, b), a > 0, b > 0, where
G(a, b) denotes the Gamma distribution with
parameters a and b.

Utilising mcmcsae, Gibbs sampling was applied to
the posterior distribution of ψ = {β, ν1, . . . , νM , σ2

υ}
to generate 2,000 non-burned-in MCMC samples of ψ,
with the Gelman-Rubin’s R_hat of each of ψ lying be-
tween 0.9999 and 1.0017 demonstrating convergence.
These are then plugged into (ii) to compute 2,000 esti-
mates ofpmi , from which the posterior mean and credi-
ble intervals of pmi are computed. For further details,
refer to [14].

Using the LN model, we generated two sets of LN
estimates for the small areas, denoted as T̂ LN1

m and

T̂ LN2
m respectively, along with their credible intervals by
ŜDLN1 and ŜDLN2 respectively. The T̂ LN1

m is compiled
without incorporating the big data in the estimation pro-
cess, while T̂ LN2

m employs a hybrid estimation approach
akin to the method employed in CKNN estimates with
the exception that calibration to the independent na-
tional total which is based on pro-rata, as the LN esti-
mates is only 0.2% higher than the independent national
benchmark total. These estimates were tabulated in the
last four columns in Table 1, and visually represented
in Fig. 2. The diagram on the left of the lower panel in
Fig. 2 plots the LN1 data, and the diagram on the right
plots the LN2 data.

From Table 1, we make the following observations:
1. Without calibration, the national sum of the small

area estimates from both LN estimates are further
away (i.e. less accurate) from the actual number
of volunteers of 35,742 than that of the CKNN
estimates.

2. The average absolute estimation error of CKNN
estimates is smaller (i.e. more accurate) than the
LN1 estimates, but higher (i.e. less accurate) than
the LN2 estimates, suggesting the LN2 estimates
are slightly more on target than CKNN estimates –
an error of 42 for the LN2 estimates as compared
with 57 for the CKNN estimates.

3. The average relative root mean square error of
the CKNN estimates is the smallest (i.e. the most
accurate) and is 11% compared with 15% for LN2
estimates.

4. The coverage rate of LN1 and LN2 estimates are
numerically (but not statistically) higher than the
CKNN estimates.

From Fig. 2, the following observations can be made:
1. The CKNN (i.e. the hybrid estimates) plot (dia-

gram on the left on the top panel) is better than the



S.-M. Tam / SAE for binary data 587

Fig. 2. Plot of T̂HY
m , T̂FH

m , T̂LN1
m , T̂LN2

m and their 95% error bars against Tm. a. Notes: (1) Data are sourced from Table 1 (upper left, lower left
and left right plots) and [19] (upper right). Error band is defined as T̂ I

m ± 1.96ψ where ψ denotes root MSE (upper panel) and credible interval
(lower panel). (2) Tm denotes the actual size of the small aream, the superscripts HY,FH,LN1andLN2 represent hybrid, Fay-Herriot,logit-normal
and hybridized logit-normal estimates respectively.

LN1 plot (diagram on left of the bottom panel),
both in terms of numerical accuracy of the predic-
tion, and reduction in uncertainty.

2. The CKNN plot is worse than the LN2 plot (dia-
gram on right of the bottom panel) in terms of nu-
merical accuracy but better in terms of reduction
in uncertainty.

3. The performance of LN1 estimates is comparable
with that of the FH estimates. At first glance,
this contrasts with findings in the literature [15,
16]. However, those studies assume the linking
model – specifically, assumption (ii) of the LN
model – perfectly explains the target variable. The
2016 Census data, however, does not substantiate
this assumption.

4. Comparing the LN1 with the LN2 plots, it is evi-
dent that hybrid estimation is superior to no hybrid
estimation.

5. Conclusion

The key results outlined in this paper underscore the
superiority of CKNN estimates over LN and FH esti-
mates, albeit with a notable reduction in this superi-
ority when juxtaposed with hybridised LN estimation.
Regardless of what methods one may choose for SAE,
this result underpins the importance of adopting hybrid
estimation.

It should be noted that the methods outlined in this
paper require certain assumptions to be fulfilled [19].
They are:

1. The target variables, which are also collected in
the survey, A, are observed throughout the big
data set without measurement errors – this condi-
tion is more likely to be satisfied when using ad-
ministrative data for hybrid estimation than using
many other types of big data. Where this condition
is not satisfied, A ∩ B can be used as a training
data set to construct a measurement error model
to adjust the target variables in big data [28];

2. there are no over-coverage errors in the big data.
Where this is not the case, Am ∩Bm can be used
to estimate over-coverage rates in the small areas
to remove the bias from TBm

;
3. the donor set, D, which depends on the size of B

and A has to be sufficiently large, to support the
imputations;

4. δm is fully observed for the units in the survey
data set, A – this can generally be made pos-
sible by matching the units between A and B
through direct matching or probability match-
ing [29]. When δm is not observed, or observed
with error, one may use a semi-supervised clas-
sification technique to compute an EM estimator
for δm [21]; and

5. associated with each unit of the population, there
is a set of covariates which are available and
known to the statistician. The assumption pre-
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sumes the existence of a database with covariates
covering the whole of the population.

The drawback of nearest neighbour methods arises
when the dimensionality, i.e. p, becomes too large [27,
p. 22]. In such cases, the methods are susceptible to the
curse of dimensionality, wherein the donors are posi-
tioned so far apart that they no longer genuinely qual-
ify as nearest neighbours. In our numerical example,
with p = 3, the CKNN estimates of the total number
of volunteers in small areas are not affected by this
phenomenon.

An attraction of the CKNN method is in the variable-
agnostic nature of the KNN algorithm. Put differently,
this singular algorithm, configured only once, can be
seamlessly applied to a spectrum of target variables. In
contrast to the LN method, there is no necessity to con-
struct variable-specific linking models for each target
variable. This attribute allows the NSO to swiftly gen-
erate SAEs across a wide array of target variables. Ad-
ditionally, in scenarios where unit record files are gen-
erated by the NSO for subsequent secondary analysis
by researchers, the imputed data over this diverse array
of target variables exhibit internal consistency across
them without the need for further statistical processing.
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