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Abstract. In this paper, we focus on respondent-driven sampling (RDS), which is a valuable survey methodology to estimate the
size and the characteristics of hidden or hard-to-measure population groups. The RDS methodology makes it possible to gather
information on these populations by exploiting the relationships between their components. However, RDS suffers from the lack
of an estimation methodology that is sufficiently robust to accommodate the varying conditions under which it is applied. In
this paper, we address the estimation problem of the RDS methodology and, by approaching it as a particular indirect sampling
technique, we propose three unbiased estimation methods as possible solutions.
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1. Introduction

In this paper, we focus on respondent-driven sam-
pling (RDS), which is a valuable survey methodol-
ogy for both national and international organisations
to estimate the size and characteristics of hidden (e.g.,
homeless people, undocumented immigrants) or hard-
to-measure population groups (e.g., minorities, indige-
nous people).

The principle of “leaving no one behind” is at the
heart of the 2030 Agenda and a key requirement for
many Sustainable Development Goals (SDG) indica-
tors is to be available for the most vulnerable and
marginalised population groups. Nevertheless, halfway
through the implementation of the 2030 Agenda, most
SDG indicators are still not available at the needed level
of disaggregation to monitor the socioeconomic condi-
tions of hidden and hard-to-count population groups.
As a result, it is neither possible to produce reliable
structural data on the needed disaggregation dimensions
nor to monitor the developments of emerging phenom-
ena that need to be approached with targeted evidence-
based policy interventions.
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The RDS methodology makes it possible to gather
information on these populations by exploiting the re-
lationships between their components. Moreover, the
effectiveness of the RDS can be further increased by
employing an integrated approach in which the RDS
is used in conjunction with other information sources,
such as administrative or geographical data.

The RDS is a network-based sampling technique [1,
2] that was developed first by Eckathorn [3]. RDS has
been the favourite survey method for sampling popu-
lations that are difficult to reach due to the potential of
a viable sampling technique with reasonable inferen-
tial approaches. As a result, since its establishment, it
has been employed in countless investigations of these
populations across many countries [4]. RDS starts with
a small sample of individuals (“seeds”) with which the
researchers are familiar. Each participant is then given
a small number of coupons with unique identifiers to
distribute to their contacts in the target population, en-
rolling them in the study and growing the sample size
until the sample includes the desired number of respon-
dents. The RDS process stops either when, in the se-
lection process, we encounter only units already iden-
tified in the previous steps or at a predetermined data-
collection step (e.g., the fifth step). Picture 1.1 below
illustrates an example of a network sampling process
articulated into three steps. The blue lines are the links
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Fig. 1. Example of network sampling process∗. ∗The thin grey lines
represent links existing in the population but not observed in the
sample.

observed in the sample. Up to and including step 2,
participants g, b, c, a, 3, and 4 are kept in the sample.
Participants d, 1, 2, 5, and 6 are not observed.

We may view RDS as a specific extension of the ex-
tensively used group of convenience sampling meth-
ods known as “snowball sampling networks” [5] which
are frequently employed as a last option when a tra-
ditional sample frame is not available [6]. Compared
to those of more traditional snowball sampling, RDS
offers two key benefits. First, respondents receive few
coupons. This enables statistical inference to be more
appropriately defined and makes it more plausible to
approximate the final sample as a probability sample.
Second, asking respondents to pass coupons to their
contacts in a potentially stigmatised community reduces
potential confidentiality issues. Due to this innovation,
RDS is a compelling method for gathering data from
marginalized and difficult-to-reach populations.

However, the RDS methodology suffers from the lack
of an estimation methodology that is sufficiently robust
to accommodate the varying conditions under which
it is applied. Although it is quite robust for estimating
mean and proportion values [7], the accuracy of the
total estimates depends on several features including
the nature of the network connecting the individuals
in the population and the lack of a rigorous sampling
approach to select the sampling units.

In this paper, we address the estimation problem and
by approaching the RDS methodology as a particular
indirect sampling technique [8], we propose three unbi-
ased estimation methods as possible solutions. In par-
ticular, the first method assumes a random sampling of
the initial individuals. In contrast, the second method,

which considers purposive sample selection, creates a
nonbiased estimation if the initial sample of respondents
falls into all the clusters of networks that characterise
the population of interest. Finally, leveraging the gen-
eralised capture-recapture estimation approach [9], we
propose an estimator that accounts for the noncoverage
of two independent indirect samplings.

The paper is organised as follows. In Section 2, we
summarise the traditional methodology of the RDS
methodology, illustrating the data collection technique
and the Volz and Heckathorn estimator [10], which has
been very successful in practical applications due to its
lack of computational complexity. Section 3 introduces
the basic symbology, and we show how the RDS can be
seen as a particular specification of indirect sampling
in which each survey wave represents the indirect basis
for the subsequent RDS phase. In Section 4, we expand
the sampling aspects in the RDS. Section 5 introduces
the three estimators. Section 6 concludes the work, and
we begin to outline a strategy to overcome information
gaps for SDG indicators for hard-to-reach populations,
focusing on indigenous peoples.

2. Data collection and estimation in the classical
RDS approach

RDS is frequently carried out by using techniques
suggested by Salganik et al. [11] and outlined in pro-
tocols such as those proposed by White et al. [4] and
Johnston [12].

A preliminary sample of typically 2 to 10 seeds is
chosen. Aiming to represent all the key socioeconomic
subpopulations that researchers anticipate may exist in
the target population, seeds are selected to be as var-
ied as possible. The rationale of this derives from the
fact that each subpopulation may represent a separate
network (or a cluster) of target individuals. If we select
a seed in a given subpopulation, we can explore the
network of related individuals. In contrast, if we do not
select any individual in a subpopulation, the specific
cluster of individuals cannot be observed in the RDS
process. Therefore, picking up in the initial sample all
possible distinct networks increases the possibility of
constructing unbiased inferences on the target popula-
tion.

The enumerators should include community opin-
ion leaders in the initial seeds. Hence, their acceptance
and support of the survey method may likely inspire
widespread involvement from other target population
members. This buy-in is crucial in target populations
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that are unlawful or stigmatised, especially if the pop-
ulation has any prior exposure to risky research prac-
tices. Following an interview, the seeds are given some
coupons, each with a unique identification number, to
spread to other population members. This number was
used to reconcile the practical need to prevent the early
termination of the sample trees with the inferential aim
of limiting the branching of the sample. Members of
the population who receive coupons visit a study centre
where they are directly interviewed or given an inter-
view appointment. Three coupons are likewise supplied
to subsequent replies; this process continues until the
sample size is approximately reached and the coupons
are tapered or discontinued. Participants are paid for
their time spent taking the survey. Additionally, for each
successful recruiting, participants receive rewards. In
the survey, the number of target population contacts of
each respondent must be measured. This is typically
done by asking questions that narrow the recruit’s refer-
ences to the precise definition of the target population.
Interviewers must also verify membership in the target
population. Researchers must also assure participants
do not participate in the survey more than once. Study
staff are familiar enough with the target population in
many settings to notice repeat participation attempts. In
other cases, repetition is prevented by collecting non-
identifiable but unique information about participants,
as in Johnston [13].

The RDS methodology can be applied alternatively
to the entire population of individuals or by consider-
ing only the subpopulation at risk of belonging to the
target population. For instance, if the target population
coincides with forced labour people, we may observe
people working in sugarcane.

Contrary to what was previously believed, Eckathorn
[3] used a Markov modelling of the peer recruitment
process to demonstrate that bias from the convenience
sample of beginning participants from which the sample
started gradually diminished as the sample increased
wave by wave. By using the model, they demonstrated
how the sample approached an equilibrium indepen-
dent of the beginning location or independent of the
convenience sample of seeds from which it started as
it expanded wave by wave. The conclusion was that
this sampling technique may become reliable if there
were enough waves, meaning that any seed selection
can eventually yield the same equilibrium sample com-
position. However, the researchers did not show how an
unbiased estimate can be derived.

Eckathorn [14] introduced the first RDS population
estimator based on the essential idea that in RDS, re-

lationships tend to be reciprocal. This implies that if
person A knows person B, then B knows A.

The estimator bases its validity on the principle of
network balance between population subgroups. Up to
a constant factor, the volume of network connections
to and from each group can be approximated. For each
pair of groups, this results in a set of balance equations
that may be used to solve for the relative size of each
group. Volz and Eckathorn [10] proposed a slightly
biased estimator. In the following we call this estimator
the VH estimator. The VH estimator is based on the
following hypotheses [15]: 1. The network size is large
compared to that of the realised sampling, including
the initial seeds and the respondents recruited by the
RDS process. 2. Homophily is weak enough, where
homophily is the tendency for nodes to preferentially
form network contacts with others like themselves. 3.
Reciprocity of contacts. 4. With-replacement sampling.
5. Enough sample waves. 6. Accurate measurement. 7.
The recruitment in the subsequent waves of the RDS
process is random.

The first three hypotheses relate to the nature of the
contact network, while Hypotheses 4 to 7 relate to sam-
pling. Hypothesis 4 is the most critical and may intro-
duce a certain level of bias, as the sampling process
adopted assumes a link between the persons recruited.

Focusing on the first three assumptions, let us con-
sider the example below in Fig. 2, where we assume that
people of the target population belong to three disjoint
clusters. If the starting sample includes only persons in
one group, the traditional RDS can estimate only the
total number of persons in that cluster suffering from
a substantial undercoverage problem. Since people of
the target population are often grouped geographically,
observing each cluster’s units in the starting sample is
appropriate.

The VH estimator has had great application suc-
cess in the practice of real investigation due to its
great computational ease. Subsequently, other estima-
tors have been proposed in the literature (see among
others [16,17]) each of which overcomes some of the
limitations associated with the assumptions made with
the VH estimator. These estimators have higher com-
putational complexity, and introduce some modelling
assumptions on the cluster variables or the nature of the
contact network.

To illustrate the classical VH estimator, let us con-
sider the case where the total of a characteristic

Y =
∑

k∈U
yk (1)

in the population of interest U (of N units) is to be
estimated, where yk is the value of y for unit k ∈ U .
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Fig. 2. Example of target population divided in disjoint clusters.

Let S be the sample of different units at the end of
the RDS process. Let αk be the number of times unit k
is observed in S, where

m =
∑

k∈S
ak.

The probability of selection of unit k is supposed to
be proportional to their contacts

pk = Lk/NL̄,

where

Lk =
∑

j∈U
λj,k, L̄ =

L

N
, and L =

∑
k∈U

Lk

where λj,k is the link (0,1) variable between individuals
j and k. Let

p̂k = Lk/N
ˆ̄L

be the Hansen Hurwitz (HH) [18] estimate of pk, where

ˆ̄L =

(∑
`∈S

a`L`
mp`

)/(∑
`∈S

a`/mp`

)
is the HH estimate ratio of the average number of con-
tacts in the population. The numerator on the right-hand
side of the previous equality is given by:∑

`∈S

a`L`
mp`

=
∑

`∈S

a`L`
mL`

L

=
1

m
L
∑

`∈S
a` = L.

The denominator can be expressed as∑
`∈S

a`
mp`

=
∑

`∈S

a`L

mL`

ˆ̄L and p̂k are, therefore, given by:

ˆ̄L =
L∑

`∈S
a`L
mL`

=
m∑

`∈S a`
1
L`

,

p̂k = Lk

/
N

m∑
`∈S a`

1
L`

.

The VH estimator of Y is

ŶVH =
∑

k∈S

akyk
mp̂k

=
∑

k∈S
ykwVH,k (2)

where

wVH,k =
ak
mp̂k

. (3)

is the sample weight assigned to unit k.

3. Totals of interests and a formalisation of the
RDS as a particular case of indirect sampling

The RDS can be formalised as an indirect sampling
scheme. In this type of sampling, there is an initial UA

population of NA units from which the research starts,
and a UB population of NB units that constitute the
study’s target population.

In our case, UB ≡ U means that it coincides with
the target population U , which implies NB = N .

The specific unit j of the initial population UA con-
sists of the unit j itself and all its contacts. Let j and k
be the labels identifying the population units in UA and
UB , respectively. Let λj,k be the link variable between
units j ∈ UA and k ∈ UB , where λj,k = 1 if j is
directly linked to k. We have λj,k = λk,j and λj,j = 1.
Let
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Fig. 3. Example of construction of the totals YS0,R.

ȳAj = −
∑

k∈UB

λj,k
LBk

yk (4)

be the value of the characteristic of interest for unit
j ∈ UA, where

LBk =
∑

j∈UA
λj,k.

In the initial population UA, each unit in contact
with unit j contributes to the y value of that unit in
a weighted manner, where the reciprocal of the total
number of contacts gives the weight.

The two populationsUA andUB have the same num-
bers of units: NA = NB = N . We have

NA =
∑

j∈UA

∑
k∈UB

λj,k
LBk

=
∑

k∈UB

∑
j∈UA

λj,k
LBk

(5)

=
∑

k∈UB
1 = NB = N.

Moreover, the target parameter may also be expressed
as the sum of the ȳAj values over the population UA:

Y =
∑

j∈UA
ȳAj . (6)

Indeed, it is

Y =
∑

j∈UA
ȳAj

=
∑

j∈UA

∑
k∈UB

λj,k
LBk

yk (7)

=
∑

k∈UB

∑
j∈UA

λj,k
LBk

yk =
∑

k∈UB
yk.

In addition to the total Y , another total that plays a
crucial role in the RDS methodology is the aggregate,

YS0,R
. That is, the total of the variable y where starting

from the sample S0 (which constitutes step 0 of the
process), additional units are considered in subsequent
steps through all their contacts. The total considers this
aggregate after the step of this process. We can consider
this as a search process on a graph.

Figure 3 illustrates this process starting from sample
S0, which includes only unit j.

To clarify how this total can be constructed, let us
compute it step by step. To distinguish among the search
processes of the different steps, let jr (with jr ∈ UA
and r = 0, 1, . . . , R− 1) be the subscript of the popu-
lation unit involved in step r of this search process on a
graph.

At step 0, the total YS0,0 is simply the sum of the
values yj for the units included in the sample S0:

YS0,0 =
∑

j0∈S0

yj . (8)

In step 1, we observe the links of units in S0. We
compute YS0,1 by adding to the total YS0,0 the values
of y of the new units individuated in the search process
starting from the units in S0. We can formalise this
process as

YS0,1 =
∑

j0∈S0

∑
k∈UB

yk
λj0,k

LS0

k

, (9)

where LS0

k =
∑
j0∈S0

λj0,k.
To clarify the notation, we note that the j0 unit is also

one of the k units. We also note that LS0

k is the total
number of links to unit k (identified in step 1 of the
process) that can be computed starting from the units in
S0.
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We can reverse the order of the sums and formulate
as

YS0,1 =
∑

k∈UB
yk
∑

j0∈S0

λj0,k

LS0

k

(10)

where LS0

k =
∑
j0∈S0

λj0,k.
We note that Eq. (10) avoids the multiple counting of

a unit linked to different elements of the initial sample,
as illustrated in Fig. 4, where unit b is connected to both
units j and a of S0. Indeed, it is∑

j0∈S0

λj0,b

LS0

b

=
λa,b

LS0

b

+
λb,b

LS0

b

+
λj,b

LS0

b

=
1

3
+

1

3
+

1

3
= 1.

At step 2, we have

YS0,2 =
∑

j0∈S0

∑
j1∈UA

∑
k∈UB

yk
(11)

λj0,j1
LS0
j1

λj1,k
LBk

.

We note that the last summation is over UB , i.e., the
target population. The middle summation is on UA, i.e.,
on the initial population. The first summation is limited
to the initial sample from which the research starts. This
kind of organisation of the order of summations also
appears in the following formulas. The last summation
is always on UB , and the first is on S0. In contrast,
the intermediate summations are always on the starting
population UA.

Reversing the order of the summations, we have

YS0,2 =
∑

k∈UB
yk
∑

j0∈S0

∑
j1∈UA

(12)
λj0,j1
LS0
j1

λj1,k
LBk

.

Let us note that in this case, the unit k ∈ UB is
counted only once, avoiding the multiple counting of
a unit linked to different elements of the initial sample
and its links. This is illustrated in Appendix 1.
. . .
Continuing recursively the above process, at step R

we have

YS0,R =
∑

j0∈S0

∑
j1∈UA

. . .
∑

jR−1∈UA∑
k∈UB

yk
λj0,j1
LS0
j1

λj1,j2
LBj2

× . . .×

λjR−2,jR−1

LBjR−1

λjR−1,k

LBk

=
∑
k∈UB

yk
∑
j0∈S0

∑
j1∈UA

. . .

∑
jR−1∈UA

λj0,j1
LS0
j1

λj1,j2
LBj2

× · · · ×

λjR−2,jR−1

LBjR−1

λjR−1,k

LBk
. (13)

Even in this case, we avoid the multiple counting of
a unit linked to different elements collected in the R
steps of the RDS process.

Based on the above expressions, we note the follow-
ing.

– Each step of network sampling can be formalised
as an indirect sampling mechanism.

– In a given step of the RDS process, the participants
from which the search starts constitute the source
list UA, and their links are the target population
UB .

– In the subsequent step, the people found in the
target population UB become the people of the
initial population UA, from which a new search
starts.

– This switch in the role of the sample participants,
from the target population UB to the initial popu-
lation UA of the next step, occurs at each wave of
the RDS search chain.

Remark 1. A path in graph theory is a finite or infinite
sequence of edges that joins a sequence of vertices. We
note that if R is greater than the maximum of the mini-
mum paths between any pair of nodes in each cluster of
the units of S0, then the following implications follow.

– YS0,R represents the total of the y variable related
to all the groups to which the elements of S0 be-
long.

– if S0 does not include all clusters characterising
the population of interest, then YS0,R < Y .

We obtain these important outcomes illustrated in
remarks 2 and 3 below by interpreting the result of
Remark 1 in an alternative way.
Remark 2. YS0,R = Y if

– R is greater than the maximum of the minimum
paths between any pair of nodes in each cluster of
the units of S0.

– The S0 sample must include people from all clus-
ters with people from the target population.

Remark 3. We consider the case of two interconnected
units in which they know each other. However, these
units may belong to two separate clusters if the RDS
search rules call for stopping the search if a connec-
tion is identified with a person living in a geographic
location distinct from that of the original contact. In
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Fig. 4. Example of Steps 0 and 1.

this case, to ensure the equality YS0,R = Y , in addition
to the two conditions in Remark 2, there is the addi-
tional condition that the S0 sample must include people
from all geographic locations with people in the target
population.

4. Sampling the RDS research chain

Unlike in the previous section, in the RDS process,
not all links of a unit kept in the process are observed,
but only a randomly selected sample of them is ob-
served. The RDS process starts at step r = 0, with sam-
ple S0 (which may be randomly selected or not), and
in subsequent steps r = 1, 2, . . . , R, we form samples
S1 ⊂ S2 ⊂ . . . ⊂ Sr ⊂ . . . ⊂ SR, each incorporating
the sample from the previous step. To illustrate the for-
mation of the generic sample Sr+1, we introduce ad-
ditional symbology below. Let us consider the jr ∈ Sr
unit and denote by

LSr
jr

=
∑

k∈UB
λjr,kδk (Sr) =

∑
k∈Sr

λjr,k

the total number of contacts of the unit that have been
selected in sample Sr, where δk(A) = 1 if unit k be-
longs to set A and δk(A) = 0 otherwise. For the same
unit jr, let

LCr
jr

= LBjr − L
Sr
jr

be the number of contacts that have not been selected
in sample Sr, and can be selected in sample Sr+1. For
each unit jr included in the Sr sample, we select, in-
dependently of the other units included in Sr,mjr + 1

units for the Sr+1 sample where mjr = Min(m,LCr
jr

),
being m is a fixed number (e.g., m = 2 or 3) that
remains unchanged in the different steps of the RDS.
Of these mjr + 1 units, one is the jr unit itself, and
the other mjr units are selected with a simple random
sampling without replacement (SRSWOR) out from the
LCr
jr

units. The conditional probability that unit jr+1 is
selected in sample Sr+1, given jr ∈ Sr

τjr+1|jr∈Sr
=



1 if
(
λjr,jr+1

= 1
)

and[
δjr+1

(Sr) = 1
]

mjr

LCr
jr

if
(
λjr,jr+1 = 1

)
and[

δjr+1
(Sr) = 0

]
0 if λjr,jr+1 = 0

.

Remark 4 on the feasibility of the selection process.
The illustrated selection process avoids the dead-end
loops typical of graph sampling. However, to make it
feasible, it is essential to know the LCr

jr
quantity, ob-

tained as difference of two quantities, LBjr and LSr
jr

.
The value of LBjr can be requested directly from re-
spondent jr. Remembering that the relationships ex-
plored in RDS have the character of reciprocity, LBj
corresponds to the total number of people who unit jr
knows and can point to in turn. Operationally, the LSr

jr

quantity can be obtained in alternative ways. Suppose
nonidentifiable but unique information about contacts
of units included in the Sr sample [13] is available in
the data-collection APP used by the interviewer. In that
case, a specific software application can be launched
that identifies units not included in Sr and proceeds
to select mjr units to be included in sample Sr+1 ran-
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Fig. 5. Example of the formation of sample S1 from sample S0 with m = 2.

domly. Alternatively, the same software application can
be run by the study centre (see Section 2 above) that
supports the survey operations, and the results can be
reported and provided in real-time to the interviewer
who makes the Sr+1 sample selection. Depending on
the specific conditions of the survey, other feasible op-
erational mechanisms can be defined.

Remark 5 on the research chain for a subpopula-
tion. We consider the case of constructing the RDS
sampling search chain only on the units of a subpopu-
lation, for example, only on the people of a particular
class-age. We denote by xj a dichotomous variable that
takes value 1 if unit j belongs to the subpopulation and
takes value 0 otherwise. In this case, the link variables
are defined as

λ(x)j,k = λj,kxjxk.

The values LBk are modified accordingly.

5. Estimators

Next, we present three estimators. The first assumes
a random selection of the S0 sample, and the second
adopts the traditional RDS methodology while consid-
ering a non-probabilistic S0 sample. The third estimator
is developed under a capture-recapture approach [12]
while allowing for the smoothing of the coverage prob-
lems that may affect both of the first two estimators.

5.1. S0 selected with a random sampling

Let us suppose a random sample S0 of fixed size
n0 is selected from UA without replacement and with

inclusion probabilities πj0, where

πj0 > 0 for j0 = 1, . . . , NA and∑
j0∈UA

πj0 = n0. (14)

To facilitate the understanding of the calculation
method, we construct the estimator step by step. In each
step, we obtain a sampling unbiased estimate of the total
Y . However, as the steps of the RDS process progress,
the estimate is based on a more significant number of
observations.

At step 0, we have the classical HT estimator:

Ŷ0 =
∑

j0∈S0

yj0
1

πj0
=
∑

j0∈S0

yj0wj0 , (15)

where wj0 = 1/πj0 is the sampling weight.
In Step 1, we have

Ŷ1 =
∑

j0∈S0

∑
k∈S1

yk
λj0,k
LBk

1

πj0

1

τk|j0∈S0

.(16)

As illustrated in Appendix 2, denotingE(·), the sam-
pling expectation operator, we have E(Ŷ1) = Y , mean-
ing that Ŷ1 is a sampling unbiased estimate of Y . Re-
versing the order of sums, we can express Ŷ1 in the
classical weighted form as

Ŷ1 =
∑

k∈S1

ykwk1 (17)

where

wk1 =
∑

j0∈S0

λj0,k
LBk

1

πj0

1

τk|j0∈S0

.

Estimator Ŷ1 can also be formulated referring to
Eq. (6) as:

Ŷ1 =
∑

j0∈S0

1

πj0
̂̄yAj0 (18)
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where ˆ̄yAj0 =
∑
k∈S1

yk
λj0,k

LB
k

1
τk|j0∈S0

is the unbiased
estimate of ȳAj0

In Step 2, taking Eqs (16), (17), and (18) of step 1 as
a reference, the unbiased estimator Ŷ2 can be expressed
according to these three alternative ways

Ŷ2 =
∑

j0∈S0

∑
j1∈S1

∑
k∈S2

yk
λj0,j1
LBj1

λj1,k
LBk

1

πj0

1

τj1|j0∈S0

1

τk|j1∈S1

,

Ŷ2 =
∑

k∈S2

ykwk2 ,

Ŷ2 =
∑

j0∈S0

∑
j1∈S1

1

πj0

λj0,j1
LBj1

1

τj1|j0∈S0

ˆ̄yAj1 ,

where

wk2 =
∑

j0∈S0

∑
j1∈S1

λj0,j1
LBj1

λj1,k
LBk

1

πj0

1

τj1|j0∈S0

1

τk|j1∈S1

,

and ˆ̄yAj1 =
∑
k∈S2

yk
λj1,k

LB
k

1
τk|j1∈S1

is the unbiased esti-

mate of ȳAj1 . We have E
(
Ŷ2

)
= Y .

Recursively using the previous procedure, at the ulti-
mate step R of the RDS process, we have:

ŶR =
∑

j0∈S0

∑
j1∈S1

. . .
∑

jR−1∈SR−1∑
k∈SR

yk ×
λj0,j1
LBj1

× . . .×
λjR−1,k

LBk

1

πj0

1

τj1|j0∈S0

× . . .× 1

τk|jR−1∈SR−1

,

ŶR =
∑

k∈SR

ykwkR,

ŶR =
∑

j0∈S0

∑
j1∈S1

. . .
∑

jR−1∈SR−1

λj0,j1
LBj1

× . . .×
λjR−1,k

LBk

1

πj0

1

τj1|j0∈S0

× . . .× 1

τjR−1|jR−2∈SR−2

ˆ̄yAjR−1
,

where

wkR =
∑

j0∈S0

∑
j1∈S1

. . .
∑

jR−1∈SR−1

λj0,j1
LBj1

× . . .×
λjR−1,k

LBk

1

πj0

1

τj1|j0∈S0

× . . .× 1

τk|jR−1∈SR−1

and

ˆ̄yAjR−1
=
∑

k∈SR−1

yk
λjR−1,k

LBk

1

τk|jR−1∈SR−1

.

In Appendix 2, we see E
(
ŶR

)
= Y

Remark 6 on estimating the sampling variance. We
can approximate the RDS design with multistage sam-
pling with replacement, where each step may be viewed
as a specific sampling stage, and the replacement refers
to a single unit. In that way, we may derive an estimate
of the sampling variance [19][(Formula 11.35)];

v
(
ŶR

)
=

1

n0 (n0 − 1)

∑
j0∈S0

(
1

zj0
Ŷj0 − ŶR

)
where

Ŷj0 =
∑

j1∈S1

. . .
∑

jR−1∈SR−1

∑
k∈SR

yk

λj0,j1
LBj1

× . . .×
λjR−1,k

LBk

1

πj0

1

τj1|j0∈S0

× . . .× 1

τk|jR−1∈SR−1

,

and zj0 = πj0/n0.

Remark 7 on the estimator for a subpopulation. As
illustrated in Remark 5, the link variables are defined
as λ(x)j,k = λj,kxjxk, and the variables LBk are mod-
ified accordingly. Moreover, the target variable yk is
modified as y(x)k = ykxk.

Remark 8 on type of estimator. Considering the above
expressions, we can see how the ŶR estimator can be
seen as a particular case of the generalised weight share
method (GWSM) estimator.

Remark 9 on the starting sampling. The sampling
design should maximise the number of observed indi-
viduals of the target population in the sample S0 by
adopting proper choices in the first and ultimate stages
(or phases) of the sampling process. First-stage selec-
tion tends to oversample the areas where the researchers
have some a priori information of a high concentration
of the target population. Final-stage sampling tends to
oversample the target people by modelling the inclusion
probabilities on variables predictive of the phenomenon
available in the sampling frames adopted to select the
final-stage units.
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5.2. S0 selected with a nonrandom sampling

If the sample S0 is selected nonrandomly, we can
obtain a nonbiased estimate only of the total YS0,R.
We illustrate this case by referring only to step R and
the weighted form of the estimator. An unbiased (see
Appendix 2) estimator of the total YS0,R is

ŶS0,R =
∑

k∈SR

ykwkR,S0

where

wkR,S0 =
∑

j0∈S0

∑
j1∈S1

. . .
∑

jR−1∈SR−1

λj0,j1
LS1
j1

× · · · ×
λjR−1,k

LBk

1

τj1|j0∈S0

× . . .× 1

τk|jR−1∈SR−1

.

We note that the formulation of ŶS0,R is similar to
that of the ŶR estimator, except that in ŶS0,R, the first
weighting factor (1/πj0) of ŶR is equal to 1 , and LS0

j1

replaces the LBj1 factor.

Remark 10 on type of estimator. We can straightfor-
wardly see how the ŶS0,R estimator can be seen as a
particular case of the GWSM estimator.

Remark 11 on the starting sampling. To ensure that
estimator ŶS0,R is an unbiased estimate of the total Y ,
i.e., that condition E(ŶS0,R) = Y is met, the initial
sample S0 should respect the three conditions illustrated
in remarks 2 and 3.

5.3. Generalised capture-recapture estimator

Even if the S0 sample is randomly selected, the first
estimator ŶR may be biased. Indeed, undercoverage
may occur if respondents do not trust the interviewers
and tend to hide their status.

Likewise, if the S0 sample is nonrandomly chosen,
even the second estimator ŶS0,R can undercover the
total Y if the following conditions are not met: (i) R is
greater than the maximum of the minimum paths be-
tween any pair of nodes in each cluster of the units of
S0, and (ii) S0 does not include all clusters characteris-
ing the population of interest.

The generalised capture-recapture (CReG) estimator
allows us to overcome the abovementioned undercov-
erage by leveraging a capture-recapture perspective. A
comprehensive treatment of this estimator and how it
mitigates undercoverage deserves much more space in

this article than can be devoted. The interested reader
can undoubtedly look to the extensive work reported
in [9].

Let us consider two independent surveys based on
the RDS methodology, and we suppose they are articu-
lated in R steps. The first starts from an initial random
sampling, while the second starts from a nonrandom
sample. Furthermore, we suppose that the two sample
selections are independent. The CReG estimator of Y
may be expressed as

ŶCReG =
ŶRŶS0,R

Ŷintersect,R

where
Ŷintersect,R =

∑
k∈SR, intersect

wkRwkR,S0
yk

where SR,intersect is the intersection sample between
the two samples that are generated from random and
nonrandom sampling after R steps.

A useful approach is applying the estimator CReG on
the two nonrandom starting samples but with a different
mechanism of undercoverage of the two respondent
groups.

6. Conclusions

The disaggregation of data for SDG indicators on
hidden or hard-to-count population groups presents sev-
eral critical issues that are difficult to overcome to pro-
duce reliable official statistics at the national and inter-
national levels. In this context, it is impossible to esti-
mate the characteristics of these groups through models
as in other situations.

Considering, for example, indigenous populations,
data availability varies widely from country to country.
Few countries provide up-to-date and high-quality data.
Many other countries have only data that are scattered
over time. Or the data they provide is not supported by
a sufficiently robust methodology, both for precisely
identifying the subpopulation group of interest and for
the sampling technique adopted.

Given the current context of producing official statis-
tics on the subject, it is unrealistic that this lack of data
on indigenous peoples is going to improve soon.

Therefore, it becomes necessary to define and ap-
ply an implementation program that can improve this
situation relatively quickly.

This implementation program should be based on the
following pillars:

1. The first pillar is to develop a valuable data collec-
tion strategy for sample surveys that is capable of
measuring the number of people belonging to the
indigenous population in a given area. This strat-
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egy needs to cover various aspects, including the
formulation of the questionnaire for identifying
persons belonging to the indigenous population
and the characteristics of special sampling tech-
niques that can maximise the efficiency of sur-
veys aimed at obtaining data on these hidden or
hard-to-measure population groups. Specifically,
the data collection strategy consists of technical
manuals, open software modules, ad hoc train-
ing materials, etc. In short, anything that enables
or helps conduct surveys or specific survey mod-
ules to estimate the size of indigenous popula-
tions. Regarding the questionnaire, the data col-
lection strategy should develop a set of standard
questions on the key characteristics of the specific
population of interest and not adopt generic ques-
tions on whether specific individuals belong to an
indigenous population group.

2. The second pillar is to adapt the data collection
strategy to ongoing survey programs. For exam-
ple, the indigenous module may be applied to a
large-scale national survey conducted by a na-
tional statistics office. Another example can be to
promote the application of the indigenous sam-
pling module to international surveys, such as the
World Bank’s LSMS survey. Regarding the sam-
pling aspects, it is helpful to consider an over-
all sampling strategy to maximise the number of
observed individuals of the target population in
the sample by combining the first and final sam-
pling stages. First-stage methods should tend to
oversample the areas where the researchers have
some a priori information on the geographical
concentration of the target population. Final-stage
sampling should oversample the target population
by adopting strategies, such as respondent-driven
sampling (RDS), that leverage the existing hidden
relationships among the individuals of the target
populations.

3. The third pillar is adopting estimation methods
that allow unbiased estimates of phenomena of in-
terest in target populations. In this paper, we have
considered the RDS, widely used for observing
hidden or rare populations but which lacks an es-
timation methodology that is sufficiently robust to
accommodate the varying conditions under which
it is applied. We have proposed three unbiased
estimators. The first assumes a random selection
of the starting sample, and the second considers
a nonprobabilistic starting sample. The third es-
timator is developed under a capture-recapture

approach and allows for smoothing of the cov-
erage problems that may affect the estimators.
We have studied their sampling expectation and
have indicated the conditions that may be fulfilled
to guarantee their unbiasedness concerning the
target totals.
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Appendix 1: Equation (7)

We have

YS0,2 =
∑

k∈UB
yk
∑

j0∈S0

∑
j1∈UA

λj0,j1
LS0
j1

λj1,k
LBk

=
∑

k∈UB
yk
∑

j0∈S0

λj0,j1
LS0
j1∑

j1∈UA

λj1,k
LBk

being∑
j1∈UA

λj1,k
LBk

=

{
1 if λj1,k = 1
0, otherwise ,

∑
j0∈S0

λj0,j1
LBj1

=

{
1 if λj0,j1 = 1
0, otherwise .

Appendix 2: Unbiasedness of Ŷ1

We have

E
(
Ŷ1

)
=
∑

j0∈UA

1

πj0
E [δj0 (S0)]

∑
k∈UB

yk

λj0,k
LBk

(
1

τk|j0∈S0

)
E [δk (S1) | j0

=
∑

j∈UA

πj0
πj0

∑
k∈UB

yk
λj0,k
LBk(

τk|j0∈S0

τk|j0∈S0

)∑
j0∈UA

∑
k∈UB

yk
λj0,k
LBk

=
∑
k∈UB

yk,

since∑
j0∈UA

λj0,k
LBk

= 1.

Unbiasedness of ŶS0,R

E
(
ŶR

)
=
∑

j0∈UA

∑
j1∈UA

× · · ·

×
∑

jR−1∈UA

∑
k∈UB

(
λj0,j1
LBj1

× . . .×
λjR−1,k

LBk

)
×

(
E [δj0 (S0)]

πj0

E [δj1 (S1) | j0 ∈ S0]

τj1|j0∈S0

× . . .× E [δk (SR) | jR−1 ∈ SR−1]

τk|jR−1∈SR−1

)
yk

=
∑

j0∈UA

∑
j1∈UA

. . .
∑

jR−1∈UA∑
k∈UB

(
λj0,j1
LBj1

× . . .

×
λjR−2,jR−1

LBk

λjR−1,k

LBk

)
yk

=
∑

j0∈UA

λj0,j1
LBj1

∑
j1∈UA

λj1,j2
LBj2

×

. . .×
(∑

k∈UB

∑
jR−1∈UA

λjR−1,k

LBk
yk

)
=
∑

j0∈UA

λj0,j1
LBj1

∑
j1∈UA

λj1,j2
LBj2

×

. . .×
∑

jR−2∈UA

λjR−3,R−2

jR−2
Y = Y.

Unbiasedness of ŶS0,R

E
(
ŶS0,R

)
=
∑

j0∈S0

∑
j1∈UA

× . . .

×
∑

jR−1∈UA

∑
k∈UB(

λj0,j1
Lj0

× . . .×
λjR−1,k

LBk

)
×

×
(
E [δj1 (S1) | j0 ∈ S0]

τj1|j0∈S0

× . . .

×E [δk (SR) | jR−1 ∈ SR−1]

τk|jR−1∈SR−1

)
yk

=
∑

j0∈S0

∑
j1∈UA

× · · ·

×
∑

jR−1∈UA

∑
k∈UB(

λj0,j1
Lj1

× · · · ×
λjR−1,k

LBk

)
yk

= YS0,R


