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Abstract. Surveys are mainly used to obtain reliable estimates for planned domains at national and regional levels. However,
the unplanned domains (lower administrative layers) with small sample sizes must be estimated. The direct survey estimates
of the non-planned domains with small sample sizes lead to large sampling variability. Thus, small area estimations dealt with
managing this variability by borrowing the strength of neighboring areas. The target variables of the study were obtained from the
2016 Ethiopian demographic and health survey (EDHS) and the auxiliary variables taken from the 2007 population and housing
census data. Multivariate Fay Herriot (MFH) model was used by incorporating the correlations among the target variables. The
model diagnostic measures assured the normality assumption, and the consistency of multivariate small area estimates are valid.
Multivariate EBLUPs of the target variables produced the lowest percent coefficient of variation (CV) and root mean square
error (MSE). Therefore, multivariate EBLUP has improved the direct survey estimates of undernutrition (stunting, wasting, and
underweight) for small sample sizes (even zero sample sizes). It also provided better estimates compared to the univariate EBLUPs.
Generally, multivariate EBLUPs of undernutrition produced the best reliable, efficient, and precise estimates for small sample
sizes in all zones. Zones are essential domains for planning and monitoring purposes in the country, and therefore these results
provide valuable estimates for policymakers, planners, and legislative organs of the government. One of the novelties of this paper
is estimating the non-sampled zones, and therefore the policymakers will give equal attention similar to the sampled zones.
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1. Introduction

Sample surveys are mainly designed to produce esti-
mates of population characteristics of interest for larger
domains at regional and national levels with large sam-
ple sizes [1]. In these large domains, reliable, efficient,
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and precise direct survey estimates can be produced
from the survey data. However, in many practical cases,
estimates are often required for areas with small sam-
ple sizes for which the survey was not addressed. Re-
cently the demand for reliable, consistent, and precise
small area statistics is significantly increased across the
globe. Unfortunately, for most surveys, the sample size
is not large enough to guarantee reliable direct estimates
for all characteristics of interest. Small area estimation
(SAE) overwhelmed the problems of producing reli-
able estimates of parameters of interest for which the
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samples sizes are too small for adequate precisions [1].
Small area estimations based on area-level aggre-
gated population data is a Fay Herriot model since it
was introduced by [2]. Many researchers studied small
area estimation under the univariate Fay Herriot (UFH)
model, which overlooks the correlation between related
target variables of interest [3—5]. However, surveys may
be appropriate in practical cases to consider many cor-
related target variables. In such cases, the multivariate
Fay-Herriot (MFH) model can be used to integrate the
correlation among target variables. The MFH extends
the UFH model introduced by [6] and developed by
considering different covariance structures of the ran-
dom effects by [7]. The MFH model replicated the joint
modeling of more than one target variable, in contrast
to the UFH model [8]. MFH models have become pop-
ular methods to produce reliable parameter estimates
of multiple related characteristics of interest that are
commonly produced from many surveys [8].

Statisticians are often applied to assess correlated
measures of target variables, such as undernutrition in-
dicators (stunting, wasting, and underweight). Multi-
variate models consider the correlation of different vari-
ables and are typically applied to this situation. There
are few publications in the literature on small area esti-
mates that use multivariate small area estimations under
the FH model. Studies by [7-10] evaluated the preci-
sion of small area estimators produced from univariate
models to those generated from multivariate models for
each target variable.

In this study, we used a multivariate extension of the
Fay-Herriot model to help the estimate of mean vectors
of the z scores of undernutrition indicators in small
areas for small or zero sample sizes. When multiple
dependent variables are considered correlated, the MFH
model may produce better results than the univariate
FH model [1], but these models have received little
attention.

The mean squared error (MSE) is integral to small
area estimation research [1]. MSE estimation depends
on the method of model parameter estimation, but the
assumptions made about the distributions of the ran-
dom model components. It is essential to obtain an ac-
curate estimator of MSE to reflect the true variability
associated with the EBLUP estimators. MSE estimators
have been studied using variance component estima-
tors under the MFH model [11,12]. The performance
of small area estimates under the MFH model was as-
sessed by the coefficient of variation (CV %) and root
MSE [10,13].

Undernutrition remains the leading public health
problem in different continents, especially in eastern

Africa and southern Asia [14,15]. In Ethiopia, undernu-
trition is a severe problem for children under five and
table among the worst countries in the world [16,17].
Even though there has been significant recent progress
in the country, there are still problems in different
parts [16]. The target variable for this study has been
the z-score of the undernutrition status of children un-
der five, which are underweight (weight-for-age), stunt-
ing (height for age), and wasting (weight for height)
from the 2016 Ethiopian demographic and health survey
(EDHS) data.

The standardized measures of stunting, wasting,
and underweight were calculated using the new child
growth standards released by the world health organi-
zation [18]. Children whose height-for-age z-score is
below minus two standard deviations (—2 SD) from
the median of the reference population are considered
stunted, which means low height relative to age. Chil-
dren whose weight for height z-score is below minus
two standard deviations (—2 SD) are deemed to be
wasted [15,17,18]. Underweight is a composite form of
undernutrition that includes elements of stunting and
wasting. If the weight for age z-score is below minus
two standard deviations (—2 SD), then the child is un-
derweight [17,18].

According to the report in [15], globally, an estimated
144 million and 47 million children under five were
stunted and wasted, respectively. Most of the world’s
stunted, underweight and wasted children under five
were lived in Asia and Africa [15]. In Ethiopia, 38%,
10%, and 24% of children under five were stunted,
wasted, and underweight [16,17].

Many studies in Ethiopia examined undernutrition
at the regional level [16,19-24]. These analyses were
carried out utilizing survey data from planned domains
at the national and regional levels. Furthermore, some
studies have recently been undertaken at the zonal
level [25-27]. However, the small area estimation ideas
that boost effective sample sizes were overlooked in
these investigations. As a result, unplanned areas that
are zones of undernutrition in Ethiopia (the third admin-
istrative level) must be assessed using auxiliary vari-
ables to overcome the problem of small sample sizes.
Because of the small sample size and the fact that the
zones are unplanned domains for the Ethiopian survey,
traditional direct survey estimation methods cannot be
employed. As a result, under the MFH model, small
area estimations are applied for under five age child
undernutrition indicators.

The health service uses decentralization as the most
influential administrative determinant [28]. The fed-
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eral ministry of health decentralized the health service
parallel to the government structures (regions, zones,
and woredas). These administrative hierarchies are the
key institutions involved in health care delivery in the
country [28,29]. Among them, the zonal governments
serve as a bridge between regional and woreda (district)
governments. The zonal health department is respon-
sible for monitoring and evaluating health activities in
the districts [28], which means that zones have more
policy implications than districts. Therefore, zonal level
estimates of undernutrition are invaluable for legislative
organs at any level of structures in the country.

Thus, our study was focused on the multivariate esti-
mates of the z scores of undernutrition (stunting, wast-
ing, and underweight) of the zones to produce relatively
the best reliable, efficient, and precise estimates, viz.
borrowing auxiliary variables from the census data un-
der the MFH model. A z-score, also known as standard
deviation from the mean, is a measure of data disper-
sion, with some data being highly dispersed and others
being less so. Z scores allow researchers to compare
data from several normally distributed samples. It also
provides several advantages. The most noteworthy is
that they may be used to estimate summary statistics
for the population or subpopulations, such as CV and
quartiles [18,30,31].

The successive sections of this research paper are or-
ganized as follows: Section 2 describes the data sources,
the sampling design and methodologies of the multi-
variate Fay Herriot model, Section 3 contains the re-
sults, discussions are presented in Section 4, and finally,
Section 5 contains conclusions.

2. Methods and materials

In this section, the secondary source of the data used
in the MFH model was the 2016 EDHS combined with
the 2007 population and housing census data. These
were the latest round of available data being used for
policymakers in Ethiopia. A wide gap could exist be-
tween the 2007 census and 2016 survey data since the
census in this country takes place every ten years. Note
that using auxiliary covariates to model the undernu-
trition data from 2016 data are not expected to change
significantly over a short period of time [32]. However,
we used the 2016 census projection for sex, urban and
rural residence auxiliary variables to all zones [33].

These data are used for estimating the z-scores of un-
dernutrition at zonal levels in Ethiopia. The 2016 EDHS
used a sampling frame designed for the Ethiopian pop-

ulation and housing census, which was carried out in
2007 by the Ethiopian central statistical agency (CSA).
The 2016 sample survey was designed to provide reli-
able estimates of key indicators at the national and re-
gional levels. Similarly, the sample survey was designed
to provide estimates for urban and rural areas [17].

In the 2016 EDHS, a two-stage stratified random
sampling technique was applied to collect data from
nine regions, two administrative cities, and urban and
rural areas. There were 21 strata selected for sampling.
Enumeration areas (EAs) samples were collected inde-
pendently from each stratum in two stages. At every
lower level of administration, implicit stratification and
proportional allocation were achieved by sorting the
sampling frame within each sampling stratum before
sampling, according to administrative units at different
levels, and using a probability proportional to sample
size selection at the first sampling stage [17].

In the first stage, 645 EAs were independently se-
lected in each stratum with probability proportional to
the EAs size. Among 645 EAs, 202 EAs were for urban,
and 443 EAs were for rural areas. In the second stage,
an equal probability systematic sampling was used to
select 28 households per cluster from the newly created
household lists. The height and weight measurements
were collected from children 0-59 months, women aged
15-49 years, and men aged 15-59 years [17] in all
the selected households. In this study, we comprised
8441 households of children under five within 87 zones
of Ethiopia. The sample sizes are ranged from 5 to
457 households, with an average of 97 households in
all 87 surveyed areas (zones special zones and spe-
cial woredas). And also, there were eight non-sampled
zones (special zones and special woredas).

2.1. Variables of the study

2.1.1. Target variables

The target variables to estimate using small area esti-
mation techniques have been the z-scores of undernutri-
tion (stunting wasting or underweight) under five chil-
dren standardized by WHO standards [1]. They were
defined using the [1] child growth standards. The target
variables are denoted by y;; and defined as the gth 2
score of stunting, wasting or underweight child under
age five in the i*" zone levels.

2.1.2. Auxiliary variables

The auxiliary variables used in this study were ob-
tained from Ethiopia’s 2007 population and housing
census. They were derived from census data in two
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ways: through characteristics associated with children
under five and parents. In one instance, the sex (male
or female) and age (below one year, 1-2 years, and
4-5 years) of children under five years of age were
collected. On the other hand, the auxiliary variables
of parents were: sex (male and female), place of resi-
dence (urban and rural), age (15-24, 25-34, 35-44, and
45-49), source of drinking water (improved and unim-
proved), educational levels (non-educated, primary and
secondary and above), literacy (literate and illiterate),
marital status (married, never married and others), type
of toilet facility (have toilet facility and doesn’t have toi-
let facility), the number of sons died (no died, one died
and two and more died ), the number of daughters died
(no died, one died and two and more died ), the number
of families in the household (less than five, and five
and more), and disability (disabled and not disabled),
and employment status (government-employed, private
employed, self-employed, employer, unemployed and
other employment [1-5].

These variables are aggregated at the zonal level to
be used as auxiliary variables in small area estimations.
In the study, 41 auxiliary variables were taken into ac-
count. However, the suitable variables are chosen using
principal component analysis (PCA), which reduces
the number of variables to a few key components with
minor information loss [10].

2.2. Multivariate Fay Herriot model

Various extensions of the basic area-level model
have been developed in the literature [1,7,8,11,12]. One
type of extension leads to extending the UFH model
to a multivariate Fay-Herriot model to take advan-
tage of the correlations between different character-
istics of interest [7,8]. Suppose the population is de-
composed into m areas. Let 0; = (01, 02;, . . ., 01;)T
be a vector of the j* characteristics of interest and
¥; = (Y15, Y24, - - - » Ymj) be the j* estimators of 6;,
with 7 = 1,2, ... J. The MFH is defined in two stages.
The first stage is the sampling model which is given
below

y;=0;+€,j=12...,J=3 (1)

Where the vector €; ~ N (0, R;) is a sampling error
with known m x m covariance matrix V;. Moreover,
we can assume that v; is related to p; area-specific aux-
iliary variables ; = @1, ...,z ). Through a linking
model.

0, =x] B +v;,v; ~N(0,G)),j=1J (2

where vj = (v1,V2j,...,Vm;)T be a vector of area
(zone) random effects with J x J covariance matrix
G; = U?Im where I, is m x m identity matrix for
i = 1,2,...,m. The matrix z; be the j" matrix
of area level auxiliary variables of size m x p; and
Bj = (B1, B2, ..., Bs) be vector of regression coeffi-
cients corresponding to x ;. Therefore, combining the
sampling and linking models, the multivariate Fay Her-
riot model is produced as follows.

yj::cj,ﬁ'j—l—uj—i—ej,j:1,2,...,J:3 (3)

where v; ~ N(0,G;) and €; ~ N(0, R;) with v; and
¢; are independent, and y; is the direct estimates of the
target variables of interest. Where J is the number of
target variables.

We can rewrite model (3) in matrix form as follows

y=zB+zv+e,v ~ N(0,G),e ~ N0, R) (4)

where v = coli¢j<s(v;) and € = coli¢j<(€;) are
independent. The matrix z is a constant matrix assumed
to be known. The matrix © = diag, ;< ;(x;) is Jm x
p; matrix of area level auxiliary variables (area level
proportions), y = coli<;<s(y;) is Jm x 1 vector of
variable of characteristics interest (target variables). The
col operator means stacking the matrix column. Gs is
the covariance matrix of area effects, and also Rs is the
sampling errors of the JmxJm covariance matrix, which
is assumed to be known from the survey data.

In our study the characteristics interest of target vari-
ables were stunting (y;1), wasting (y;2) and under-
weight (y;3) obtained from 2016 EDHS survey data.
The direct survey estimator of a total y;; = ZnN;1 Yijn
is y”fj” = > WinYin- Where n is the sample and w;;,s
are the sampling weights of the n*" household within
the i*" area, j = 1,2,...J = 3,n = 1,2,...,N;,
i = 1,2,...,m. The direct estimator of the i*" area
population is N{”’ = 3 w;y. The direct weighted sur-
vey estimator of the area mean is §j;; = y”f]” JNEr 23],

Therefore, the direct estimator of the variance co-
variance matrix (R) of the multivariate data for z scores
of stunting (y;1), wasting (y;2) and underweight (y;3)
were approximately in the following equations.

2
o 1

Cov(Fit, Yir) = <N> Z

1)(yiln - yil)(yim - gn’)

where [,r =1,2,3,n=1,...,N;, i =1,....,m. wi,

are the sampling weights of the n'* household within

the it area [4].

This study considered three particularizations of
models under the Fay Herriot model in Eq. (4) con-

Win (win -
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cerning the arguments of correlated characteristics of
interest. The first model is assumed to have zero corre-
lation between the target variables (stunting, wasting,
and underweight). This is particularly the UFH model.
The second model is a model that assumed the existence
of correlations with the homogeneity of the covariance
matrix of the area-level random effects. Therefore, in
model two, the model variance component parameters
are the correlation (p) and the homogeneous variance
(G =02

The area level (zonal level in our case) random com-
ponent v ~ N(0,G = ¢2) in model (4) is for each
area level random component, v; ~ N(0,02,), since
all area level components are not homogeneous [2,4,5].
The second model, the autoregressive multivariate Fay-
Herriot model (AR (1)), has been written as follows:

0-1212' = agQZ(p)7 1= 1727 em

1 VERRE pR—Q pR—l

Q()_ 1 P 1 "'pR_ng_Q
Rl
pR—l pR—Q e 1

Correlations (p) are highest between neighboring
times in the first order autoregressive (Lag 1) structure,
and decrease systematically with increasing distance
between time points.

The last model is the heteroscedastic version of the
second model, such that there exist correlations with
heterogeneous random variances components. Model
3 is known as the heteroscedastic autoregressive mul-
tivariate Fay-Herriot model (HAR(1)), and its random
error component is as follows [7,8]:

2
V(iir) = PVir—1 + Qr, Vio ~ N(0, 00)7 Qi ™~
2 _ o

N(0,02), r=1,2,... R, i=1,2,...;m

050 = 1, o, and v are independent and the ele-
ments of random variance matrix is written as

J
_ _ 2k _2 : :
Tijj = »_ =P o7_}. for diagonal matrix

j—s _
Tinjs = kz p2k+|ﬂ*5‘0‘2j_sl_k,, for the off diagonal
_—

matrix

2.2.1. Multivariate small area estimates under Fay
Herriot model

The MFH in model (4) can be written in the form
of general linear mixed model [6]. The multivariate
empirical best linear unbiased prediction (EBLUP) of
area level random effects are (v = coli<icm (V)
are presented by [2,4]. Under model (4) the mean is
E(y) = (3 and the variance covariance matrix y

is var(§) = G + R = X. The empirical best lin-
ear unbiased estimator of the regression coefficients
is given by: 3 = (x"Zx) "Xy with co-
variance matrix cov(3) = (73X 71z)~!. And also
the empirical best linear unbiased predictors of the
random effects are given by the following expression
0 = Z2Z" (y — 27 3). Therefore, the multivariate
EBLUP of y in model (4) is computed by [7].

g=zB+ 252" (y—z"p) Q)

The most common practical problem in small area
estimation is measuring the variability associated with
EBLUP under the MFH model. The variability in these
estimators is measured using mean squared error. The
MSE of the multivariate EBLUP defined under the
MFH model (4) is followed [7]. The MSE of multivari-
ate EBLUP estimator is obtained by taking the diagonal
covariance of matrix ¢ as follows:

MSE(§) = coli<j<.im[cov()];

Where [cov(§)]; is the ji* diagonal element of
JmxJm of covariance matrix cov(§). The estimates of
multivariate MSE(9) is give as

MSE(§) ~ 91(0) + 92(0) + 293(6) (©)
Where, § are the estimated parameters. The de-
tails of mathematical derivations are presented in [2,4].
The MSE of the non-sampled zones under MFH
model for all target variables calculated using the
synthetic regressions were given as MSE(6,) =

L 2l 1 2 . .
mf[; (;Z?G)] 12, + G, Where i = 1,2,...,mis

the sampled zones and ¢ = 1,2,..., M is the non-
sampled zones [8—10]. The maximum-likelihood (ML)
and the restricted maximum likelihood methods are
used to estimate the model parameters.

3. Results
3.1. Variables selection and model comparison

This study took into account many auxiliary variables
(approximately 41). On the other hand, the appropriate
variables are chosen using principal component analysis
(PCA), which reduces the number of variables to a few
key components with minimal information loss [10].
PCA generates components that concentrate more ex-
plained variation in the first few principal components
than any other variable in the original data. PCA uses
an orthogonal transformation process to turn a set of
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Fig. 1. Normal Q-Q plots of the residuals for stunting, wasting and underweight.

Table 1
The first 8 principal components with eigenvalues
Eigenvalue  Difference  Proportion  Prin (%)
1 16.23 9.57 0.3959 39.59
2 6.66 2.35 0.1624 55.83
3 4.31 1.91 0.1051 66.34
4 2.41 0.57 0.0587 72.20
5 1.83 0.29 0.0446 76.66
6 1.54 0.43 0.0376 80.42
7 1.11 0.06 0.0270 83.12
8 1.05 0.15 0.0255 85.67

observations of possibly correlated variables into a set
of principal component values, which are uncorrelated
variables. The number of primary components produced
was 41, the same as the number of auxiliary variables.
Nonetheless, the first eight principal components were
kept (Table 1) since their eigenvalues were greater than
one, and they explained 85.67 percent of the overall
fluctuations [37].

In this result, we compared different multivariate
Fay Herriot models to check the existence of corre-
lations among target variables and the heteroscedas-
ticity of covariance for random area effects. Accord-
ingly, we equated the models using z scores of under-
nutrition to check the existence of correlations and to
decide relatively the best model for further analysis.
The estimates of the model variance component esti-
mators (6, = 0.0001, 6,, = 0.0265, 5, = 0.0094
and p = 0.48) were first estimated under the hetero-
geneous model. The p values of the pairs of random
zonal effects variance component estimators 0.58 for
62 and 67, 0.84 for 62 and 672, and 0.30 for 62,

v
and 633 are insignificant at 5% levels of significance.

Therefore, we can conclude that the zonal level random
effects variances are homogeneous [2,4]. Consequently,
homogeneous MFH model is relatively better than the
heteroscedastic model. In addition, the p value of test
of correlation parameter (p) under homogeneous MFH
model was zero. Hence, the multivariate Fay Herriot
model with homogeneous variance is more likely the
best model so we used this model for the rest of the
analysis. The estimated model variance component pa-
rameters in this model are (5, = 0.013, 5 = 0.7638)
which shows strong correlation between the target vari-
ables of stunting, wasting and underweight.

3.2. Model diagnostics measures

The normality assumptions of the sampling error un-
der the homogeneous variance in the MFH model have
been detected by the normal probability (Q-Q) plots
(Fig. 1) and the Shapiro-Wilk test. The assumptions of
normality were validated by probability (Q-Q) plots of
the sampling error residuals for the three target vari-
ables of stunting, wasting, and underweight (Fig. 1).
In addition to this, the Shapiro-Wilk test was carried
out to measure the normality assumptions of the target
variables. The p-values of the Shapiro-Wilk test were
0.182, 0.208, and 0.137 for stunting, wasting, and un-
derweight respectively. The Shapiro-Wilk test is larger
than 0.05 level of significance shows that the distribu-
tion is proved to be a normal distribution.

3.3. The performance measures and improvements

The model diagnostics measures of small area esti-
mates under the homogeneous variance MFH model
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Fig. 2. Bias diagnostic plot with y = z line (red line) and regression line (blue line) for stunting, wasting and underweight for zones in Ethiopia:

Model based MFH estimates versus direct estimates.

are based on the arguments that model-based small
area estimates should be consistent, unbiased, and more
precise than direct survey estimates. The model-based
small area estimates should provide an approximation
to the direct survey estimates, so these values are con-
sistent and close to the expected values of direct esti-
mates. The small area estimates under the MFH model
should have less variability than the corresponding di-
rect survey estimates. The bias diagnostics, CV, and
root MSE measures were performed in this research for
the reliabilities, validities, and precisions of the model-
based multivariate small area estimate for the three tar-
get variables.

The direct survey estimates on the y-axis vs. the
model-based multivariate small area estimates on the
x-axis are plotted (Fig. 2). The bias diagnostic plots in
(Fig. 2) tested the argument that the deviation of the
multivariate small area estimates regression line (blue
line) from the line of equality y = x line (red line).
These plots reveal that the multivariate small area esti-
mates under the MFH model nearly converge with the
survey estimates. These bias diagnostic measures indi-
cated that the model based multivariate EBLUP is more
likely to be consistent with direct survey estimates.

Furthermore, we can compute the Wald test statistic
for the goodness of fit diagnostic. Following [38], the
difference between the model-based estimates and the
direct survey estimates should not be significant. The
value of the Wald test statistic for the goodness of fit
diagnostic follows x? square distribution with m = 87
degree of freedom. The null hypothesis in this test is
the EBLUP estimates didn’t differ significantly from
the direct estimates. Consequently, the values of Wald
test statistic is 30.2 with p-values = 1 for stunting,
23.4 with p-values = 1 for wasting and 44 with p-
values = 0.99 for underweight. Therefore, there is not

enough evidence to reject the null hypothesis implies
that the model-based estimates and the direct estimates
are statistically equivalent.

A summary statistics of the CV (%) of the direct,
univariate EBLUP and multivariate EBLUP of stunting,
wasting, and underweight were presented in (Table 2).
The CV (%) of the multivariate small area estimates
(both UFH and MFH) is less than the direct survey
estimates for all target variables. The CV (%) of di-
rect survey estimates varied from 3.26 to 32.93 with
a mean value of 9.45 for stunting, 3.84 to 34.02 with
a mean value of 11.37 for wasting, and 3.40 to 41.60
with a mean value of 9.54 for underweight (Table 2).
On the other hand, the CV (%) of univariate small area
estimates under the UFH model ranged from 3.19 to
12.63 with a mean value of 6.80 for stunting, 3.65 to
15.18 with a mean value of 7.88 for wasting, and 3.30
to 12.11 with a mean value of 6.79 for underweight. In
addition, the multivariate small area estimates of CV
(%) were varied from 3.84 to 9.65 with a median value
of 6.80 for stunting, 3.58 to 10.33 with a median value
of 6.66 for wasting, and 3.16 to 11.47 with a median
value of 5.79 for underweight in (Table 2). The sum-
mary statistics of the first and the third quartiles show
that the CV (%) of the direct survey estimates are more
than the model-based estimates (both in UFH and MFH
models) in all target variables.

The root MSEs and the CV (%) of the direct sur-
vey estimate, univariate and multivariate EBLUPs of
stunting, wasting, and underweight were reported in
(Figs 3 and 4) respectively. In (Fig. 3), the zone-specific
(with decreasing sample size) root MSE of multivariate
small area estimates (blue) is smaller than the direct
survey estimates (red) and the univariate small area es-
timates (green) for stunting, underweight, and wast-
ing. The direct survey estimates have unacceptably high
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Table 2
Summary statistics of CV (%) for direct, UFH and MFH model estimates for the three target variables (the z scores

of stunting, wasting and underweight)

Values Sample sizes Stunting Wasting Underweight
Direct UFH MFH Direct UFH MFH Direct UFH MFH
Minimum 3 3.26 3.19  3.02 3.84 3.65 3.58 3.40 3.30 3.16
Q1 38 5.41 489 434 6.93 5.73 5.44 5.79 5.18 4.60
Median 78 7.57 6.42 528 9.54 7.60 6.66 8.53 6.77 5.79
Mean 97 9.45 6.80 5.5 11.37 7.88 6.98 9.54 6.79 6.14
Q3 126 11.16 798 635 13.47 9.61 7.81 1091 8.00 7.20
Maximum 457 3293 1263  9.65 34.02 1518 1033 41.60 12.11 11.47
NB: all CV (%) are in absolute values.
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Fig. 3. Zones (sorted by decreasing sample size) root MSE’s of direct, EBLUP UFH and EBLUP MFH model estimates of stunting, wasting and

underweight for children under age five.
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Fig. 4. Zones (sorted by decreasing sample size) CV (%) of direct, EBLUP UFH and EBLUP MFH estimators of stunting, wasting and underweight

for children under age five.

standard errors for all target variables as the sample
size decreases (Fig. 3). However, the root MSE of the
direct survey estimates are improved by model-based
multivariate small area estimates due to the strong cor-
relations among stunting, wasting, and underweight.
Therefore, the results indicated that the direct survey

estimates of all the three target variables are unstable
(Table 2), (Fig. 3), and (Fig. 4). On the other hand, mul-
tivariate EBLUP with the smallest CVs is considered
more reliable and precise estimates of undernutrition.
The summary efficiency gain results for multivariate
EBLUP estimates over the univariate EBLUP estimates,
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Table 3
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Summary results of efficiency gain of MFH over UFH and direct survey estimates

Efficiency gain MFH over Direct estimate

Efficiency gain MFH over UFH

Statistics Stunting ~ Wasting Underweight Stunting ~ Wasting  Underweight
Minimum 6.89 4.48 5.94 3.87 —4.37 2.27
1%t quartile 21.94 13.86 18.70 12.96 6.42 7.94
Median 30.63 19.82 25.77 17.32 10.77 9.69
Mean 33.44 23.66 28.43 17.05 12.72 9.53
3" quartile 43.66 2991 33.73 21.28 18.44 11.16
Maximum 72.14 57.99 72.42 29.93 36.49 16.72
Table 4
Summary statistics for small area estimation under MFH Model for non-sampled zones
Statistic Direct EBLUP CV for direct estimate CV for EBLUP
Stunt  Wast quer Stunt ~ Wast Un'der Stunt ~ Wast quer Stunt Wast quer
weight weight weight weight
Min - - - 1.61 1.37 1.04 - - - 4.51 4.69 7.01
Ql - - - 1.78 1.48 1.08 - - - 8.20 8.27 11.73
Mean - - - 1.90 1.59 1.18 - - - 13.66  13.49 17.21
Q3 - - - 2.04 1.71 1.26 - - - 19.33  18.29 21.60
Max - - - 2.09 1.73 1.43 - - - 23.28 23.13 29.45

and the direct survey estimates were presented in (Ta-
ble 3). The maximum efficiency gain for multivariate
EBLUP over direct survey estimates was recorded 72.14
in Bahir Dar, 57.99 in Derashe special woreda, and
72.42 in Hawasa for stunting, wasting, and underweight,
respectively. Similarly, the multivariate EBLUP over
the univariate EBLUP was 29.93 for Bahir Dar, 39.49
for Huru guduru, Wollega, and 16.72 for Mao komo
special zone for the target variables stunting, wasting,
and underweight, respectively. The maximum improve-
ments in efficiency have been recorded for zones with
small sample sizes. For instance, Hawasa city and Bahir
Dar city have the smallest sample sizes, 5 and 7, re-
spectively. Whereas the minimum efficiency gain in
CV was recorded for large sample sizes. The minimum
efficiency gains in CV for multivariate over univari-
ate small area estimates have been recorded: 3.87 in
Korahe, —4.37 in Kemashe, and 2.27 in Derashe for
stunting, wasting, and underweight. The negative mini-
mum efficiency gain in CV for the Kemashe zone shows
the loss of efficiencies for multivariate over univari-
ate small area estimates [39]. Zones having relatively
large sample sizes, have the minimum efficiency gain
in CV. Therefore, the multivariate small area estimates
didn’t improve the direct and univariate small area esti-
mates for large sample sizes (Fig. 4). These results are
relatively a good indicator that multivariate small area
estimates were reliable for small sample sizes as the
same time survey estimates are reliable for large sample
sizes.

Table 4 reported the summary statistics of the non-
sampled zones (zero sample size for each zone) under

the MFH model for stunting wasting and underweight.
There were eight non-sampled zones (Adama special
zone, Amaro, Argoba, Basketo, Burayu, Fiq, Jimma
special zone, and Konso special woreda) under 2016
Ethiopian DHS. Small area estimate is the optimum
approach for non-sampled zones or zones with zero
sample sizes [32]. The small area estimates and CV (%)
of stunting, wasting, and underweight were estimated
based on the MFH model for non-sampled zones us-
ing auxiliary covariates from the census (Table 4). We
cannot establish a comparison of CV for non-sampled
zones since there are no direct survey estimates for
them. The small area estimates and the CV of the non-
sampled zones, on the other hand, are consistent with
the results of the sampled zones.

4. Discussion

The target variables of the study were obtained from
the 2016 Ethiopian demographic and health survey
(EDHS), and the auxiliary variables are taken from the
2007 population and housing census data. Principal
component analysis was used to reduce the number of
auxiliary variables to a few informative variables. Un-
like the survey study by [16,40], this study was the
small area estimations of unplanned domains with small
sample sizes for the correlated target variables by bor-
rowing strength from the census data. In contrast to
the univariate FH model, which ignores the correla-
tion among the target variables [41-43], this study con-
sidered the correlations among three target variables
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for a small sample size. Following the correlations of
the target variables, the univariate model becomes the
MFH model [7,8,11]. We considered three particular-
izations of the model in [7] to detect the existence or
nonexistence of a correlation and heteroscedasticity.
Likewise, we discussed the three models in detail, and
the homogeneous variance MFH model was considered
appropriate.

The normality assumption of the selected model is
valid via the Shapiro-Wilk test and normal Q-Q plot.
The Q-Q plots and the Shapiro-Wilk test have con-
cluded that the sampling errors are expected to be nor-
mally distributed [10,11]. The bias diagnostic measures
and the Wald test statistic for the goodness of fit in-
dicated that the model-based multivariate small area
estimates are likely to be consistent with the direct sur-
vey estimates for all target variables. These diagno-
sis checking were coherently agreed with the previous
studies [10-12,38].

The performance measures of the multivariate
EBLUP over the univariate small area estimates and the
direct survey estimates were measured by CV and root
MSE [7-9]. The direct survey estimates of the target
variables (stunting, wasting, and underweight) had the
largest variabilities with small sample sizes. The root
MSE of the direct survey estimates were more than the
corresponding model-based multivariate EBLUP [7].
This is because of considering the correlation between
related target variables of interest in the model-based
multivariate EBLUP estimates [10].

The best efficiency gains were recorded for the
model-based multivariate EBLUPs over the direct sur-
vey estimates in all zones for small sample sizes. The
Multivariate EBLUP improved the univariate small area
estimates and direct estimates. These improvements
were obtained because of the correlations of the tar-
get variables [10]. Thus, multivariate EBLUP under
the MFH model is the best reliable, efficient, and pre-
cise for all target variables stunting, wasting, and un-
derweight [8,10,44,45]. Multivariate small area esti-
mates improve the univariate small area estimates and
direct survey estimates due to the correlations among
the target variables. The summary statistics of the non-
sampled zones for all target variables were produced
under the MFH model [1,5,32,36]. The estimation of
non-sampled zones under the MFH model is precise
and adequate with similar approaches to the results of
sampled zones [32]. The availability of reliable and ad-
equate estimates of non-sampled zones will help the
government give them equal attention to 87 sampled
zones.

5. Conclusions

This study applied the MFH models using the 2016
survey by linking with 2007 population and housing
census data. Under the three MFH models, the homo-
geneous variance MFH model is appropriate to obtain
relatively reliable, efficient, and precise estimates. The
model diagnostic measures directed that the model-
based multivariate small area estimates are reliable
to the direct survey estimates. Furthermore, the MFH
model’s sampling errors are normally distributed for all
target variables. The CV and the root MSE indicated
that the model-based multivariate small area estima-
tions are the most reliable, efficient, and precise un-
der the homogeneous MFH model. The performance
measures of CV and root MSE under the MFH model
provided a significant gain in efficiency to obtain zonal
level estimates of stunting, wasting, and underweight.
The direct survey estimates are some high standard er-
rors with small sample sizes, but these high standard
errors are reduced by using multivariate small area es-
timates. Multivariate small area estimates highly im-
prove the direct survey estimates because they have
significant correlations between stunting, wasting and
underweight.

In Ethiopia, surveys are planned to produce national
and regional level estimates, while zonal levels are not
considered in the survey. However, zones are an essen-
tial domain for the planning and monitoring process,
and therefore the availability of zonal level statistics
plays a prominent role for planning and policymak-
ers. This study has produced the best reliable, efficient,
and precise statistics with sampled and non-sampled
zones and provides valuable information to policymak-
ers, planners, and legislative organs of the government.
One of the novelties of this paper is estimating the non-
sampled zones, and therefore the policymakers will give
equal attention similar to the sampled zones.
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