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Abstract. The integration of remote sensing data in agricultural statistics is a research topic with a long history. The research
focus is on using statistical models to link ground and remote sensing data such that the resulting estimators are design-consistent.
A design-consistent estimator assisted by linear models is well established in the literature. However, it requires enough geographic
information about the boundaries of agricultural parcels to develop a simple sample of areas. Many countries use complex samples
based on non-georeferenced list frames of households or farms and reduce to point data the georeferenced information required
for linking ground and remote sensing data.
Data on crop acreage observed at a point are necessarily categorical because a point is dimensionless. Little work has been done
on the integration of categorical ground data within complex list samples using remote sensing data. Our focus was on using
multinomial logit models for this integration. Special attention was paid to evaluate the cost efficiency of remote sensing data.
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1. Introduction

Recently, the European Space Agency (ESA)
launched the Sentinels for Agricultural Statistics
(Sen4Stat) project. The aim was to facilitate the use of
remote sensing information at the National Statistical
Offices (NSOs) supporting agricultural statistics. Other
international programs to improve agricultural statis-
tics were begun around the same time. An additional
Sen4Stat target is synergy with other initiatives, includ-
ing the Living Standards Measurement Study – Inte-
grated Survey on Agriculture (LSMS-ISA), which was
launched in 2008 by the World Bank, and the Global
Strategy to Improve Agricultural and Rural Statistics
(GSARS), which was endorsed in 2010 by the United
Nations Statistical Commission and implemented by the
Food and Agriculture Organization (FAO) of the United
Nations. An FAO output is the Agricultural Integrated
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Survey (AGRIS) method [1], together with the 50 ×
2030 Initiative, which builds on work of the LSMS-ISA
and AGRIS programs [2]. Four of five partner countries
in Sen4Stat were also partners in other initiatives, i.e.,
Ecuador and Senegal of AGRIS, Malawi of LSMS-ISA,
and Tanzania of GSARS. Accordingly, through exist-
ing collaborations and initiatives, the FAO coordinated
the provision of ground data from respective agencies
in Ecuador, Senegal and Tanzania, while ground data
collection from Malawi was coordinated by the World
Bank.

Remote sensing (RS) furnishes a very useful auxil-
iary data source to improve the cost efficiency of design-
based inference, and the integration of ground and re-
mote sensing data is a research topic with a long his-
tory [3–7]. Statistical models are used for this integra-
tion, in such a way that the estimator assisted by these
models is design-consistent [8].

The focus has been on linear models, assuming that
the sample design is simple. In countries where geo-
graphic information of agricultural parcel boundaries
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is available, it is possible to use an individual or cluster
of parcels as the sampling unit and to design a sim-
ple sample of areas (polygons) using area frames. A
linear model is suitable for integrating ground and re-
mote sensing data on crop acreage or yield because
these are continuous variables. However, many coun-
tries use complex samples based on non-georeferenced
list frames (of households or farms) and reduce to point
data the georeferenced information required for linking
ground and remote sensing data. Crop data observed
at a point are necessarily categorical because a point
is dimensionless, and multinomial logit is an appro-
priate statistical model to integrate remote sensing and
categorical ground data [9,10].

Little work has been done on the integration of cate-
gorical ground data in complex list samples of house-
holds or farms with remote sensing data. In this pa-
per, we focus on using multinomial logit models for
this integration. We give details on statistical models
to be used for crop acreage, yield and production es-
timation, as well as on the sample design used by five
Sen4Stat partner countries that are representative of the
large types of sample designs proposed in the literature.
These are list, area, and point sampling [11].

Considering the literature on the applications of re-
mote sensing to agricultural statistics, as well as expec-
tations of the NSO partner countries for these applica-
tions, we elaborated four use cases: 1. Cost efficiency;
2. Granularity; 3. Multi-seasonal estimation; 4. Opti-
mizing the sample design. A prototype for integrating
ground and remote sensing data in each use case was
developed for a large set of sampling designs, includ-
ing those currently used by the partner countries. We
include results of the application of these prototypes to
data provided by the NSOs, for cost efficiency and gran-
ularity. Finally, we outline prototypes for multi-seasonal
estimation and optimizing the sample design.

2. Methods

The approach to elaborate official statistics is well
established in the literature. It is design-based in the
sense that the inference is based on the sampling
distribution generated by the probabilistic sampling
scheme designed to select the sample [12,13]. This
sampling scheme associates with each population unit,
i = 1, 2, . . . , N , a known and positive inclusion prob-
ability πi, which play a key role in design-based in-
ference. Usually, the sample size is sufficiently large
to attain design consistency (the design-based distri-

bution of the estimator is tightly concentrated around
the true population value) at national and regional lev-
els, and design-consistent estimators are used. Estimate
accuracy is also based on the estimator’s design-based
distribution.

Our focus was on improving the cost-efficiency of
the currently used sampling designs for elaborating of-
ficial statistics on crop acreage, using RS as auxiliary
data. The approach to using auxiliary data in design-
based inference is well stablished in the literature [8],
i.e., the auxiliary extra-sample information is integrated
in the sampling design using statistical models, with-
out loss of design-consistency. In minor administra-
tive areas (municipalities) the sample size is small or
nil, so that design consistency is meaningless. Thus, a
model-based approach is used to get estimates, whose
accuracy strongly depends on the auxiliary information
reliability.

Model suitability for ground and remote sensing data
integration depends on the nature of ground data. For
continuous ground data a linear regression model is
used, but for categorical and counts ground data, a gen-
eralized linear model is more suitable [9,10]. Both types
of models allow remote sensing data of any character,
continuous or discrete. The efficiency of RS as auxil-
iary data for crop acreage has already been extensively
demonstrated in the scientific literature, but only for
continuous ground data and with the assumption that
the sample design is simple. To date, little work has
been done on the integration of categorical ground data
in complex list samples of households or farms with
remote sensing data. In this paper, we focus on using
multinomial logit models for this integration.

2.1. Sample designs

The design of the sampling scheme for use in sample
selection is key in design-based inference because it
associates with each population unit i = 1, 2, . . . , N
a known and positive inclusion probability πi, which
is used to define the estimators’ statistical distribution.
This distribution is used to evaluate the estimators’ char-
acteristics, including design consistency and accuracy.

A sampling frame is required to select a probabilis-
tic sample and we considered the two main types of
sampling frames used in practice, area frame and list
frame. The former is based on maps and/or satellite
images and the latter on population censuses. Sampling
units are either polygons or points in area frames and
households or farms in list frames. Usually, the former
is georeferenced, but not the latter [11].
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The area frame has important advantages over list
frames, including versatility, reduction of non-sampling
errors such as coverage errors, and longevity. However,
it has some inconvenience (sensitivity to outliers and
sub representation of rare or minor activities) [14]. To
overcome these inconveniences, a dual frame composed
of an area and list frame is recommended [15]. In Sec-
tion 4, we give details on the dual frame used in Senegal
to integrate ground and RS data.

Using area frames, it is possible to define sampling
units (polygons) of the same size and simple samples
with equal inclusion probabilities. In contrast, using
list frames, the sample selection scheme entails two
or more stages, the sampling units are usually of dis-
tinct size, and the probabilistic scheme assigns unequal
(size-proportional) inclusion probabilities. Therefore,
the sample is not simple but complex.

The integration of ground and RS data will be illus-
trated for the set of sample designs most often used
in practice for collecting ground data [11]. With area
frames, systematic sampling with one or more random
starts and stratified random sampling are most often
used as the sample schemes when geographic infor-
mation on parcel boundaries is available. If the parcel
boundaries are unknown, the sampling unit is usually a
point, and we will illustrate how to integrate a sample
of points selected from a list frame with RS data.

Agricultural data are frequently collected using na-
tional household surveys, for which the sample is se-
lected from a list frame (a population census) in two
or more stages, with unequal inclusion probabilities.
The sampling unit is a household and geographic infor-
mation at parcel level is rarely available. For RS data
integration, georeferenced information is required at
a minimum. To have at least one georeferenced point
by agricultural parcel within the household sample, an
additional sampling stage is used to select the parcel
centroid.

2.1.1. Area sampling
Three of the five Sen4Stat partner countries use area

samples, namely, Spain, Ecuador, and Tanzania. In
Spain, the area frame is the national topographic map.
The sampling unit is a square segment of side 700 m
(49 hectares). The sample design is non-stratified sys-
tematic with three random starts. The sample of seg-
ments for crop acreage estimation is selected in a single
stage with inclusion probability πi = n/N , where n
and N are the number of sampling units in the sample
and population, respectively.

In Ecuador, the sampling frame is a land-use map,
stratified into four strata according to the percentage

of cultivated area. The sampling unit is a segment with
geometric boundaries, whose size changes with strata:
9 hectares (ha) in stratum 1a, 36 ha in stratum 1b, 144
ha in stratum 2, and 576 ha in stratum 3. The inclusion
probability is equal within strata, πhi = nh/Nh, where
nh and Nh are the number of sampling units in the
sample and in the population of stratum h, respectively.

In Tanzania the sampling frame used to be a list
frame based on an agricultural census. Recently, in the
framework of the GSARS program, the Government of
Tanzania in collaboration with the FAO, United States
Department of Agriculture (USDA) and African Devel-
opment Bank, designed an area sample [16]. The sam-
pling frame is a map of the country stratified by land use
and the sampling unit is a point. Point sampling has a
long history [17,18]. In agricultural statistics, it is used
for selecting a sample of farms when a sampling frame
is not available; only an accurate map is required [11].
The sample of farms is used for data on a large set of
items, generally by direct interview of farmers.

Some of the aforementioned quantities, including
crop acreage and yield and natural resources, can be
observed directly on the ground, bypassing the need
to contact farmers for data collection. France is an
example of countries using point sampling for crop
acreage estimation, using data collected directly on the
ground [19]. Furthermore, the USA is an example of
countries using point sampling for a national inventory
of natural resources [20,21].

The sampling design is basically the same in the two
aforementioned countries, i.e., a two-stage sampling
in which the primary sampling unit (PSU) is a square
segment and the secondary sampling unit (SSU) is a
point. In the USA National Resources Inventory survey,
the segments are stratified, and the side of the typical
segment is 800 meters (1/2 mile), i.e., 64 hectares, with
some smaller (200 meters) and some larger (1600 me-
ters). The primary sampling rates are generally 2% to
6% of the land area. There are about 300,000 PSUs
and 844,000 points, and the second-stage sample size
is between 1 and 3 points per PSU.

In the French TER-UTI, the sampling design is non-
stratified, one-stage, and systematic. The national terri-
tory is divided into square blocks with side 12000 me-
ters. Each block is divided into four square sections of
side 6000 meters. In each section, a systematic sample
of 36 points is selected, aligned in both row and col-
umn directions, separated by a distance of 300 meters,
forming a 6 × 6 point grid.

This sampling scheme can be seen as two-stage,
so the inclusion probability is of the form πi1i2 =
πi1πi2|i1 , where πi1 and πi2|i1 are the first and second
stage inclusion probabilities, respectively.
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2.1.2. List sampling
Two of the five Sen4Stat partner countries use list

sampling, Malawi and Senegal. In Malawi, the ground
data were collected in the framework of the LSMS-
ISA program. The IHS5 sampling frame is based on
the 2018 Malawi Population and Housing Census. It
is stratified into rural and urban strata and each of the
27 districts were considered a separate sub-stratum,
part of the main rural stratum. A two-stage sampling
scheme was used to select the sample from each district.
The PSU is the Enumeration Area (EA) and the first-
stage sample is systematic without replacement, with
probabilities proportional to the number of households
in the PSUs. The SSU is a household and a systematic
sample of 16 households was used to choose the second-
stage sample, using equal probabilities. To integrate
with RS data, a georeferenced point is selected in each
parcel of the sample [22].

In Senegal, the sampling frame is based on the
2013 population census [23]. The sampling unit is a
household and the sample was designed within the
AGRIS program framework. This is a two-stage sam-
pling scheme in which the PSU is the EA, and the first-
stage sample is selected with replacement and proba-
bilities proportional to the number of households in the
PSUs. The SSU is a farm (households with agricultural
activities) and the second-stage sample is selected with-
out replacement and with equal probabilities among
households with agricultural activities.

To integrate the data in the list sample of farms with
RS data, a point is selected in each parcel within the
two-stage sample. The inclusion probability of this
point is πi1i2i3i4 = πi1πi2|i1 , where πi1 and πi2|i1 are
the first and second stage inclusion probabilities, re-
spectively. This is so because if the SSU i1i2 is included
in the sample, then the set of parcels i1i2i3 are also
included, πi3|i1i2 = 1; the georeferenced point i1i2i3i4
is not selected at random but is the parcel centroid
πi4|i1i2i3 = 1.

2.2. Statistical models

Statistical models are used to integrate the auxil-
iary extra-sample information into the sampling design
without loss of design-consistency [8]. We used linear
models if field data were continuous and multinomial
models if those data were categorical [9,24].

2.2.1. Linear models
We consider a population of N units, say agricultural

parcels. If geographic information on parcel boundaries

is available, it is possible to generate the required re-
mote sensing (RS) data at unit level. We then consider
a linear model yi = xiβ + εi relating ground data in
the ith unit yi, with the values of a set of RS variables
associated with this same unit, xi = row

16l6L
(x

li
). The

parameter vector β = col
16l6L

(βl) is unknown but can be

estimated. εi represents unobservable zero-mean ran-
dom perturbations that, conditionally on xi, account for
the variability of yi about its expected valueEyi = xiβ.

2.2.1.1. National-level estimators
The survey variable total in the population is yN =∑N
i=1 yi and the mean is ȳN = 1

N

∑N
i=1 yi. If xi

contains 1 (say x1i = 1), then yN = xNBN . Here,
xN =

∑N
i=1 xi, and BN =

(
XT
NXN

)−1
XT
NyN des-

ignates the vector of population regression coefficients
BN = col

16l6L
(Bl), where XN = row

16i6N
col

16l6L
(xli)

and yN = col
16i6N

(yi). Since xi is known for every

population unit i = 1, 2, . . . , N , then xN and XN are
known. However, yN is unknown and so is BN .

To estimateBN , we use the data collected in the sam-
ple of size n units, selected from the population with in-
clusion probabilities {πi; i = 1, 2, . . . , N}. The design-

based estimator B̂π =
(∑n

i=1
xTi xi
πi

)−1∑n
i=1

xTi yi
πi

is design-consistent for BN and as a result, the
synthetic or projective estimator ŷN = xN B̂π is
design-consistent for yN . This same estimator can
be written in the form ŷN = yπ + (xN − xπ) B̂π,
called a generalized regression estimator, where yπ =∑n
i=1

yi
πi

and xπ =
∑n
i=1

xi
πi

. The projective es-
timator can be expressed as weighted sum ŷN =∑n
i=1 wiyi with weight wi = gi

πi
, where gi = 1 +(∑N

i=1 xi −
∑n
i=1

xi
πi

)(∑n
i=1

xTi xi
πi

)−1
xTi [12].

The error of ŷN as an estimator of yN is ŷN − yN =

xN

(
B̂π −BN

)
and the sampling variance is V (ŷN−

yN ) = xNV
(
B̂π −BN

)
xTN , where V

(
B̂π −BN

)
=
(∑N

i=1 x
T
i xi

)−1
V
∑n
i=1

xTi εiN
πi

(∑N
i=1 x

T
i xi

)−1
and εiN = yi − xiBN . A designconsistent esti-
mator of the sampling variance is V̂ (ŷN − yN ) =

V
(∑n

i=1
ε̂iN
πi

)
, where V (.) is the design-based vari-

ance and ε̂iN = yi − xiB̂π .
The asymptotic distribution of ŷN is [V (ŷN
−yN )]−1/2 (ŷN − yN )→ N (0, 1) and can be used for
constructing confidence intervals for yN .

A design-consistent estimator for the mean is ˆ̄yN =
1
N ŷN . Its sampling variance is V

(
ˆ̄yN − ȳN

)
=

1
N2V (ŷN − yN ) and can be estimated using V̂ (ˆ̄yN−
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ȳN ) = 1
N2 V̂ (ŷN − yN ). Its asymptotic distribution is

the same as that of ŷN .

2.2.1.2. Domain-level estimators
A domain is a part of the population, for instance,

a region R or province within a country. Let NR =∑N
i=1 Ii be the domain size, where Ii = 1 if unit

i belongs to the domain, and Ii = 0 otherwise.
The survey variable total in the domain is yNR =∑NR
i=1 yi and the mean is ȳNR = 1

NR

∑NR
i=1 yi. To

estimate yNR , we use the sample s of size n se-
lected from the population with inclusion probabil-
ities {πi; i = 1, 2, . . . , N} and the estimator ŷNR =

xNRB̂π + NR
N̂R

∑nR
i=1

yi−xiB̂π
πi

. Here, nR =
∑n
i=1 Ii is

the number of units in the sample belonging to the study
domain and N̂R =

∑n
i=1

Ii
πi

is an estimator of NR.
If NR is unknown, then we use the estimator ŷNR =

xNRB̂π +
∑nR
i=1

yi−xiB̂π
πi

. The sampling variance is

V (ŷNR − yNR) = N2
RV

1
N̂R

(∑nR
i=1

εiN
πi

)
. A design-

based estimator of V (ŷNR − yNR) is V̂ (ŷNR − yNR)

= N2
RV

1
N̂R

(∑nR
i=1

ε̂iN
πi

)
.

2.2.1.3. Model-based small area estimation
The sample was designed to achieve the required

estimate accuracy at national level. However, reliable
estimates in small administrative areas such as a mu-
nicipality are also required without increasing sample
size n. In a minor administrative area, n will always be
smaller than at national level and, as a result, so will be
the estimators’ accuracy. A small area is a part of the
population of which, owing to the small sample size,
the design-based estimator is not sufficiently accurate
for most uses and the design consistency requirement
is meaningless.

For estimates at municipality level, we used a model-
based estimator to “borrow strength” from related small
areas to obtain accurate estimates for a given small area.
Let {(ydi, xdi) ; i = 1, 2, . . . , nd; d = 1, 2, . . . , D} be
the available dataset, where ydi represents ground data
in unit i of the small area d, xdi is the vector of RS
data, nd is sample size in the small area d, and D is the
number of small areas, so that n =

∑D
d=1 nd.

We consider the unit-level linear mixed model ydi =
xdiβ + ud + εdi, where (ud, εdi) are zero-mean inde-
pendent random variables of variances

(
σ2
u, σ

2
e

)
. We

assume the same regression parameters β and same
variance components

(
σ2
u, σ

2
e

)
, through small areas.

The model-based estimator of the total survey vari-
able in a small area yNd =

∑Nd
i=1 ydi is ŷNd = Nd

[
(1− γ̂d) x̄Nd β̂ + γ̂d

(
ȳnd+(x̄Nd − x̄nd) β̂

)]
, where

β̂ =
(
XT V̂ −1X

)−1
XT V̂ −1y is the generalized

least-square estimator of β, with y = col
16d6D

col
16i6nd

(ydi), X= col
16d6D

col
16i6nd

(xdi), V̂ −1 = diag
16d6D

(
V̂ −1d

)
and V̂ −1d = 1

σ̂2
e
Ind −

γ̂d
ndσ̂2

e
1nd1Tnd , where γ̂d =

σ̂2
u

σ̂2
u+σ̂

2
e/nd

. Here, σ̂2
e = eT e

n−D−1 and σ̂2
u=

uTu−(n−2)σ̂2
e

n∗
,

with n∗ =
∑D
d=1 nd

[
1− ndx̄d

(
XTX

)−1
x̄Td

]
, are

unbiased estimators of the variance components, where
eT e is the sum of squared residuals in the model fitted
by ordinary least squares, taking as fixed the small-area
effect ud. uTu is the sum of squared residuals in the
model fitted by ordinary least squares, with ud = 0.
x̄Nd and x̄nd are the population and sample means of
the vector xdi, respectively.

An unbiased estimator of the total mean-square error
estimator MSE (ŷNd) is [25]:

M̂SE(ŷNd) = N2
d

(
1− nd

Nd

)2

[h1d(σ̂
2
u, σ̂

2
e) + h2d(σ̂

2
u, σ̂

2
e) + 2h3d(σ̂

2
u, σ̂

2
e)],

where:

h1d
(
σ̂2
u, σ̂

2
e

)
= γ̂d

(
σ̂2
e

nd

)
+

(
1− nd

Nd

)2

(Nd − nd)
N2
d

h2d
(
σ̂2
v , σ̂

2
e

)
= σ̂2

e

(
X̄Nd−nd − γ̂dx̄d

)
A−1(

X̄Nd−nd − γ̂dx̄d
)T

h3d
(
σ̂2
u, σ̂

2
e

)
=

1

n2d

1(
σ̂2
u +

σ̂2
e

nd

)3 [
(
σ̂2
e

)2
V σ̂2

u+

(
σ̂2
u

)2
V σ̂2

e − 2σ̂2
e σ̂

2
uCov

(
σ̂2
e , σ̂

2
u

)
],

where

A =

D∑
d=1

(
nd∑
i=1

xTdixdi − γ̂dndx̄Tnd x̄nd

)

V
(
σ̂2
u

)
=

2

n2∗

[
1

n−D − 1
(D − 1) (n− 2)

(
σ̂2
e

)2
+ 2n∗σ̂

2
e σ̂

2
u + n∗∗

(
σ̂2
u

)2]

V
(
σ̂2
e

)
=

2
(
σ̂2
e

)2
n−D − 1

Cov
(
σ̂2
e , σ̂

2
u

)
= − 1

n∗
(D − 1)V σ̂2

e
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Here, n∗∗ =
∑D
d=1 n

2
d

(
1− ndx̄ndA

−1
1 x̄Tnd

)
+

tr
(
A−11

∑D
d=1 n

2
dx̄
T
nd
x̄nd

)2
. Because A1 =

∑D
d=1∑nd

i=1 x
T
dixdi, n∗∗ may be simplified to n∗∗ =

∑D
d=1

n2d

[
1− x̄nd

(
XTX

)−1
x̄Tnd

]
= n∗ − n+

∑D
d=1 n

2
d.

2.2.2. Multinomial logit models
If geographic information on parcel boundaries is

unavailable, then it is not possible to generate RS data
at parcel level. In this case, we use a point as the unit of
observation. Because a point is dimensionless, observed
crop data are necessarily categorical. For integrating
categorical ground and RS data, multinomial logit is a
suitable model [9,10,24].

We consider the survey vector yi = col
16k6K

(yik),

where yik = 1 if crop k covers pixel i and yik = 0
otherwise. K is the total number of crops so that the
constraint

∑K
k=1 yik = 1 holds. We focus on high-

resolution satellite images and the population size N is
the number of pixels in the study area A = aN , where
a is the area of the piece of land represented by a pixel.

2.2.2.1. National-level estimators
The population total of the survey vector is yN =∑N
i=1 yi = col

16k6K

(∑N
i=1 yik

)
= col

16k6K
(yNk),

where yNk is the number of pixels covered by crop k. It
is assumed that a pixel is covered by only one crop (or
that a class of mixed pixels is included), so that the area
covered by k is Ak = ayNk and the population area
is A =

∑K
k=1Ak. We want to estimate the total yN or

mean ȳN = 1
N

∑N
i=1 yi = col

16k6K

(
1
N

∑N
i=1 yik

)
=

col
16k6K

(
yNk
N

)
, where yNk

N is the proportion of pixels

covered by k.
We assume that the survey vector yi = col

16k6K
(yik)

follows a multinomial distribution MN (1, µi), where
µi = col

16k6K
(µik) and µik is the probability that unit

i is of category k, i.e., the probability of yik = 1 and
yik′ = 0; ∀k′ 6= k, with the constraint

∑K
k=1 µik =

1. We estimate yN using an estimator of µik based on
a sample of pixels {(yi, xis) ; i = 1, 2, . . . , n} selected
with inclusion probability πi, where xi = row

16l6L
(xil)

is the vector of RS data.
To link µik with RS data, we consider a multino-

mial logit model µik = exp(xiβk)∑K
k=1 exp(xiβk)

, where βk =

col
16l6L

(βkl) is an unknown parameter vector. To esti-

mate the probability µik that the cover of pixel i is crop
k = 1, 2, . . . ,K, it is sufficient to acquire estimates of
βk for k = 1, 2, . . . ,K−1 [9]. The probability of cate-

gory K is µiK = 1−
∑K−1
k=1 µik and can be estimated

using the estimates B̂πk for k = 1, 2, . . . ,K − 1.
The design-based parameter estimator B̂π = col

16k6K−1(
B̂πk

)
= col

16k6K−1
col

16l6L

(
B̂πkl

)
is design-consistent

for the maximum likelihood estimator of β = col
16k6K−1

(βk) based on the population data {(yi, xi) ; i = 1, 2,

. . . , N}, considered a simple random sample of the
multinomial model. This can be found iteratively us-

ing B̂
(m+1)
π = B̂

(m)
π +

[∑n
i=1

H(yi,β)
πi

∣∣∣
β=B̂

(m)
π

]−1
∑n
i=1

b(yi,β)
πi

∣∣∣
β=B̂

(m)
π

[13], where b (yi, β) = col
16k6K−1

col
16l6L

[(yik − µik)xil] and H (yi, β) =

[
col

16k6K−1

row
16k′6K−1

(δkk′µik − µikµik′)
]
⊗ xTi xi, with δkk′ =

1 if k = k′ and δkk′ = 0 otherwise A design-
consistent estimator of yN = col

16k6K
(yNk) is ŷN =∑N

i=1 µ̂i + N
N̂p

∑n
i=1

yi−µ̂i
πi

= col
16k6K−1

(ŷNk), where

µ̂i = col
16k6K−1

(µ̂ik), µ̂ik =
exp(xiB̂πk)

1+
∑K−1
k=1 exp(xiB̂πk)

for

k = 1, 2, . . . ,K − 1, µ̂iK = 1 −
∑K−1
k=1 µ̂ik =

1

1+
∑K−1
k=1 exp(xiB̂πk)

, N̂p =
∑n
i=1

1
πi

, and ŷNk =∑N
i=1 µ̂ki + N

N̂p

∑n
i=1

yki−µ̂ki
πi

is the estimator of the
total number of pixels covered by crop k for k =

1, 2, . . . ,K − 1; for category K it is ŷNK = N −∑K−1
k=1 ŷNk. The sampling covariance matrix of ŷN is

given approximately by V ŷN = N2V 1
N̂p

∑n
i=1

yi−µi
πi

= col
16k6K−1

row
16k′6K−1

(
N2Cov (ŷrk, ŷrk′)

)
, where

ŷrk = 1
N̂p

∑n
i=1

yki−µki
πi

is a function of N̂pk =∑n
i=1

yki
πi

, the estimators of the total number of sam-
pling units of category k for k = 1, 2, . . . ,K (be-
cause N̂p =

∑K
k=1 N̂pk), and of the estimator of

the total residuals r̂kN =
∑n
i=1

yki−µ̂ki
πi

of cate-
gory k. We focus on the sampling variance V ŷNk for
k = 1, 2, . . . ,K − 1, which are the elements along
the diagonal of V ŷN . Let Ĝk = row (gj)16j6K+1 =[
r̂kN N̂p1 N̂p2 . . . N̂pK

]
be a row vector whoseK+1

components are the estimators on which ŷrk depends.
The ŷNk sampling variance is given approximately
by V ŷNk = row

16j6K+1

(
∂ŷrk
∂gj

)
V Ĝk col

16j6K+1

(
∂ŷrk
∂gj

)
,

where V Ĝk = col
16j6K+1

row
16j′6K+1

(
Cov

(
gj , g

′
j

))
is

the design-based covariance matrix of Ĝk. The sam-
pling covariance matrix ŷN is estimated replacing µi
by µ̂i in V ŷN [13].
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2.2.2.2. Domain-level estimators
The survey variable total in the domain R is yNR =∑NR
i=1 yi = col

16k6K

(∑NR
i=1 yik

)
= col

16k6K
(yNRk), where

yNRk is the number of pixels in R covered by crop
k. To estimate yNR , we use the sample s of size n
selected from the population with inclusion probabil-
ities {πi; i = 1, 2, . . . , N} and the estimator ŷNR =∑NR
i=1 µ̂i + NR

N̂Rp

∑nR
i=1

yi−µ̂i
πi

= col
16k6K

(ŷNRk). Here,

nR =
∑n
i=1 Ii is the number of units in the sam-

ple belonging to the study domain, and N̂Rp =∑nR
i=1

Ii
πi

. The sampling variance of yNR is given ap-
proximately by V ŷNR = N2

RV
1

N̂Rp

∑nR
i=1

yi−µi
πi

=

col
16k6K−1

row
16k′6K−1

(
N2
RCov (ŷRrk, ŷRrk′)

)
. Let ŷRrk

= 1
N̂Rp

∑nR
i=1

yki−µki
πi

and ĜRk = row (gRj)
16j6K+1

= [r̂kNR

N̂NRp1 N̂NRp2 . . . N̂NRpK ]. The ŷNRk sampling vari-
ance is given approximately by V ŷNRk = row

16j6K+1(
∂ŷRrk
∂gRj

)
V ĜRk col

16j6K+1

(
∂ŷRrk
∂gRj

)
, where V ĜRk =

col
16j6K+1

row
16j′6K+1

(Cov (gRj , gRj′)). The sampling

covariance matrix ŷNR is estimated replacing µi by µ̂i
in V ŷNR .

Works in the literature [26–28] for small area esti-
mation based on multinomial mixed models follow a
penalized quasi-likelihood approach. As pointed out by
McCulloch and Searle [24], these methods are not com-
pletely satisfactory in practice. Those authors recom-
mended instead a linearization of the non-linear multi-
nomial models and used linear mixed models. Addi-
tional research is required to achieve a completely sat-
isfactory solution to this problem

2.2.3. Cost efficiency
Cost efficiency is the usual criterion for comparing

a set of sampling strategies developed for estimating
the same characteristic in the same population. Let
CGD be the cost and VGD the sampling error of the cur-
rent sampling strategy using only ground data, and let
CGD+RS and VGD+RS be the cost and sampling error,
respectively, of the strategy integrating ground and RS
data. The cost efficiency is CGDVGD for the former and
CGD+RSVGD+RS for the latter.

Although the Sentinel images and software required
for the integration of ground and RS data are provided
by ESA for free, there are costs for the NSOs such as
the time of experts and commercial cloud services re-
quired for storage and computations. Because estima-
tion of these other costs is a difficult task, we assume in

the following that CGD+RS ' CGD, so the comparison
criterion reduces to the efficiency.

The relative efficiency of RS data with respect to
ground data is RERS = VGD (VGD+RS)

−1. If RERS > 1,
then, using RS data, the current sampling error VGD

may be reduced to VGD−VGD+RS = RSeffectVGD without
increasing the survey cost. Here, RSeffect = 1−RE−1RS is
the effect of RS data on the sampling efficiency. In other
words, using RS data, the current sample size n can be
reduced without loss of accuracy in a quantity equal to
n − nRS = RSeffectn. Thus, using RS data, the ground
sample size can be nRS = (1− RSeffect)n = RE−1RS n.

We evaluate the effect of RS data on the cost effi-
ciency using either linear or multinomial models. Spain
and Ecuador are partner countries using area samples
selected in only one stage, with equal inclusion proba-
bilities, and we consider linear models for RS data in-
tegration. In Spain, the sampling frame is not stratified
and the inclusion probability is πi = n/N . In Ecuador,
the sampling frame is stratified and the inclusion prob-
ability is πhi = nh/Nh for every sampling unit of the
same stratum i = 1, 2, . . . , Nh, with h = 1, 2, . . . ,H .

The sampling variance using only ground data is
VG = V ŷN = V

∑n
i=1

yi
πi

= V
∑n
i=1

yi
n/N =

N21/n
∑n
i=1 yi = N2 (1− n/N) 1/n (n− 1)

∑n
i=1

(yi − ȳ)
2 in Spain, and VG = V ŷN = V

∑H
h=1

∑nh
i=1

yhi
πhi

= V
∑H
h=1

∑nh
i=1

yhi
nh/Nh

=
∑Nh
h=1N

2
h1/nh

∑nh
i=1

yhi =
∑H
h=1N

2
h (1− nh/Nh) 1/nh (nh − 1)

∑nh
i=1

(yhi − ȳh)
2 in Ecuador.

Using RS data, the sampling variance is VGD+RS =

V ŷN =V
∑n
i=1

yi−xiB̂
n/N =N2V 1/n

∑n
i=1 (yi − xiB̂)

= N2 (1− n/N) 1/n (n− 2)
∑n
i=1 (yi − xiB̂)2 in

Spain, where B̂ =
(∑n

i=1 x
T
i xi
)−1∑n

i=1 x
T
i yi, and

VGD+RS = V ŷN =
∑H
h=1N

2
h (1− nh/Nh) [1/nh

(nh − 2)]
∑nh
i=1 (yhi − xhiB̂π)2 in Ecuador, where

B̂π = (
∑H
h=1

∑nh
i=1

xThixhi
πhi

)−1
∑H
h=1

∑nh
i=1

xThiyhi
πhi

.
Using RS data, the current sampling error VGD can be

reduced to a quantity VGD − VGD+RS = RSeffectVGD. In
Spain, RERS '

∑n
i=1 (yi − ȳ)2(

∑n
i=1 (yi − xiB̂)2)−1

and RSeffect = 1− RE−1RS . In Ecuador, RSeffect =
∑H
h=1

chnhVGhRSeffect,h(
∑H
h=1 chnhVGh)−1, where RSeffect,h

= 1 − RE−1RS,h, RERS,h '
∑nh
i=1 (yhi − ȳh)

2

(
∑nh
i=1 (yhi − xhiB̂π)2)−1, and ch is the cost per sam-

pling unit in stratum h.
Senegal, Malawi, and Tanzania use point sampling

with unequal inclusion probabilities {πi; i = 1, 2, . . .,
N}, and we consider multinomial models for RS data
integration. The sampling variance of the yNk estima-
tor using only ground data is approximately VG =
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N2V 1
N̂p

∑n
i=1

yki
πi

. Using ground and RS data, the

sampling error is VG+RS = N2V 1
N̂p

∑n
i=1

yki−µki
πi

.
The relative efficiency of RS data for estimating the
total number of pixels covered by crop k is RERSk =

V 1
N̂p

∑n
i=1

yki
πi
×
(
V 1
N̂p

∑n
i=1

yki−µki
πi

)−1
.

RS cost-efficiency relies on the RS contribution to
reduce the sampling variance of the residuals yki − µki
with respect to the sampling variance of the ground data
yki. The sampling variance reduction depends on the
reliability of the RS data to estimate the yki expected
values, Eyki = µki. Consequently, the accuracy and
timeliness of the xi datasets required to estimate µi are
key to achieve a significant gain of cost-efficiency.

2.2.4. Other applications
As mentioned in the Introduction, “multi-seasonal

estimation” and “optimizing the sample design” are
applications of RS data useful for agricultural statistics.
We developed prototypes for these two applications
but we cannot test them here because the required data
are unavailable. Thus, we are limited to outlining the
developed prototypes.

2.2.4.1. Multi-seasonal estimation
We consider the annual agricultural cycle divided

into, say, four seasons. We use the subscript tm to refer
to season m = 1, 2, 3, 4 of year t = 1, 2, . . .. We want
to estimate the total yNtm of the survey variable in m
of t and its annual aggregate yNt .

2.2.4.1.1. The sample
We examine a two-phase sampling strategy. The first-

phase sample is the NSO sample already in place and
used for agricultural statistics. We use the subscript
1 to refer to this sample, for instance, n1 denotes its
size. We select a secondphase sample specific to each
season from among the sampling units within n1. We
choose a splitpanel or supplementary panel sampling
design consisting of a panel component and specific
component [29].

For the first season, the panel component is a sample
of n2p sampling units selected from n1, and the specific
sample for that season is a sample of n2et1 sampling
units selected from among those included in n1 but not
included in n2p. In the second season, the panel com-
ponent is the same as in season 1, n2p, and the spe-
cific sample is a number n2et2 of sampling units cho-
sen from among those included in n1 but not included
in either n2p or n2et1 . For the third season, the panel
component is the same as in seasons 1 and 2 (n2p) and

the specific sample is a number n2et3 of sampling units
selected from among those included in n1 but not in-
cluded in n2p, n2et1 , or n2et2 . In the fourth season, the
panel component is the same as in seasons 1, 2 and 3,
and the specific sample is a number n2et4 of sampling
units chosen from among those included in n1 but not
included in n2p, n2et1 , n2et2 , or n2et3 .

2.2.4.1.2. Composite estimators
A composite estimator is a function of single es-

timators, each defined separately for panel and spe-
cific samples. We consider the linear model ytmi =
xtmiβtm + εtmi, referring to season tm and both panel
and specific samples. Model parameters are estimated
using the weigthed estimator and data from the second-
phase sample n2stm (with s = p for the panel sample
and s = e for the specific sample), with B̂π2stm =(∑n2jtm

i=1

xTstmixstmi

π2stmi

)−1∑n2jtm
i=1

xTstmiystmi

π2stmi
. The

seasonal survey variable total is estimated separately,
using data from the panel and specific samples and
projective estimator ŶNstm = xNtm B̂π2stm . A design-
consistent estimator of the sampling error variance
is V̂

(
ŷNstm − yNstm

)
= V

∑n2stm
i=1

ε̂iNstm
π2stmi

, where

ε̂i2Nstm = y2stm i − x2stm iB̂π2stm .
Let yNt = col

16m64

(
yNtm

)
be the (4× 1) vector of

survey variable totals in the four seasons of year t, and
let ŷNt = col

16m64
col
j=e,p

(ŷNjtm) be the (8× 1) vector of

total estimators based on the panel and specific samples.
We consider the model ŷNt = ZyNt+eNt , where eNt =
ŷNt − yNt is the vector of sampling errors and Z =
I4 ⊗ 12 is an (8× 4) matrix indicator of the panel or
specific sample.

We assume that panel and specific samples in the
same season are independent and, as a result, in the
error covariance matrix VeNt the covariances between
ŷNptm

and ŷNet′m are nil. A composite estimator of yNt
is ŷCNt = (ZT (VeNt)

−1Z)−1ZT (VeNt)
−1ŷNt and its

covariance matrix is V ŷCNt = (ZT (VeNt)
−1Z)−1.

The composite estimator of the annual total yNt =
1T4 yNt is ŷCNt = 1T4 ŷCNt and its variance is V ŷCNt =
1T4 V ŷCNt14.

To estimate VeNt , we use the empirical correlation
and an autoregressive model yitm = Ȳtm + eitm ,
where Ȳtm = 1

Ntm

∑Ntm
i=1 yitm and eitm are mod-

eled using eitm = uitm + εitm . Here, (uitm , εitm)
designates the zeromean independent random variable
Cov (uitm , εitm) = 0 and the variance of εitm is σ2

ε .
uitm = ρui,tm−1 +ηitm is an AR(1) stationary process,
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where ηitm is a random zeromean perturbation term
whose variance is σ2 [30].

As a result, we have the linear mixed model yitm =
Ȳtm + uitm + εitm , whose temporal random compo-
nent uitm = ρui,tm−1

+ ηitm is autocorrelated and
Cov (ηitm , εitm) = 0. In this last model, yitm repre-
sents the observed data in sampling unit i in season
tm and the right term in the equation is interpreted as
follows: Ȳtm + uitm is the true value of the survey
variable and the sum of the population mean Ȳtm and
uitm . The latter is a specific component associated with
sampling unit i in season tm and represents deviation
from Ȳtm Finally, εitm is the measurement error of the
aforementioned true value.

The autocovariance function of the process uitm is
Cov

(
uitm , uit′m

)
= Cu (s), where s = |m′ −m| and

Cu (s) = σ2ρs
(
1− ρ2

)−1
. The variance of uitm is

Vuit = Cu (0) = σ2
(
1− ρ2

)−1
and the autocorrela-

tion function is Corr
(
uitm , uit′m

)
= Cu (s)/V uitm =

ρs. The autocovariance function of the process eit
is Cov

(
eitm , eit′m

)
= Cov

(
uitm , uit′m

)
= Cu (s)

and the variance is Veitm = Vuitm + V εitm =

σ2
(
1− ρ2

)−1
+ σ2

ε . The autocorrelation function for
the process eitm is ρe (s) = Corr

(
eitm , eit′m

)
=

Cu (s)/V eitm = I(s=0) + ρs
(
1 +

(
1− ρ2

)
κ
)−1

I(s 6=0), where κ = σ2
ε/σ

2 and I(.) is an indicator vari-
able whose value is 1 if the argument is true and zero
otherwise.

The ratio v=σ2
ε/Veitm=κ(1− ρ2)(1+κ(1−ρ2))−1

is a measure of the weight of the measurement er-
ror relative to the total error. The parameters ρ and
κ can be estimated through fitting by nonlinear min-
imum least squares the theoretical correlation model
ρe (s) = I(s=0) + ρs

(
1 +

(
1− ρ2

)
κ
)−1

I(s6=0) to the
empirical correlations in VeNt .

2.2.4.2. Optimizing the sampling design
The sample design is optimized to find the design

variable values that minimize the sampling variance
subject to cost (budget) constraints. The sampling vari-
ance depends on the spatial correlation structure of the
survey variable and we follow a superpopulation ap-
proach to identify this structure. We limit ourselves to
area samples and assume that the population values of
the survey variable yi constitute a sample generated
according to a second-order stationary random pro-
cess with the following characteristics [31]: the mean
is Eyi = µ, variance is Vyi = σ2, and the covari-
ance Cov (yi, y

′
i) = σ2ρy (dist (si, s

′
i)) between two

elementary observations (yi, y
′
i) at the points of coordi-

nates si and s′i is positive, decreasing when the distance
between these points d = dist (si, s

′
i) increases.

To assess the correlation structure ρy (d), theoretical
variogram and correlogram models have been proposed
in the literature. Two frequently used correlogram mod-
els are the exponential, ρ (u, v| a, τ) = (1− τ) e−d/a,
and the spherical ρ (u, v|a, τ) = (1− τ) e−d/a[
1− 3

2
d
a + d3

2a3

]
if d 6 a and ρ (u, v| a, τ) = 0 if

d > a. Here u is the number of sampling units between
si and s′i in the row direction, v the number of sampling
units between si and s′i in the column direction, and
d =

√
u2 + v2. The model parameters are the range

rate a and ratio τ = τ0/(τ0 + τd). Here τ0 is the nugget
effect, i.e., the variation at or near the origin (indepen-
dent of distance), τd is the partial sill (a function of
distance between sampling points) and (τ0 + τd) is the
sill, i.e. the maximum variation far from the origin.

It was demonstrated by Ambrosio et al. [32] how
this approach should be followed to design systematic
samples using a land-use map. Here, we propose instead
to use a crop-type map [33] to estimate the parameters
of the correlogram model. The estimated correlogram
can be used to evaluate the anticipated variance [34] as
a function of design variables for the set of sampling
strategies used in practice [35,36].

2.2.4.2.1. Anticipated variance
We illustrate the proposed approach considering

segments of size n0 and a simple random sample
of segments of size n. The variance of the sam-
pling error is V ŷN = N2 (1− n/N)S2/n, where
S2 = 1/(N − 1)

∑N
i=1 (yi − ȳN ) is the population

variance. The anticipated variance is the model-based
expected value of this design-based sampling vari-
ance EVŷN = N2 (1− n/N) ES2/n, where ES2 =
σ2Ψ (N,n0| a, τ) and Ψ (N,n0 |a, τ ) = n0 (Nn0 − 1)
(N − 1)

−1
[1− Φ (N,n0 |a, τ )] − Nn0 (n0 − 1)

(N − 1)
−1

[1− Φ (n0 |a, τ )]. Here, Φ (N,n0 |a, τ ) is
the average correlation between pairs of observations
over the C2

Nn0 pairs in the population. Φ (n0 |a, τ ) is
the average correlation between pairs of observations
over the C2

n0
pairs in a segment.

2.2.4.2.2. The optimization problem
The design variables are the segment and sam-

ple sizes, and we find optimal values of these vari-
ables by solving the following optimization problem:

min
{(n,n0)}

AVŶ = min
{(n,n0)}

N2
h (1− n/N)σ2/nΨ(N,n0

|a, τ ), subject to C0 +
∑L
h=1 Ccn+

∑L
h=1 Cwnn0 +∑L

h=1 Ck
√
An 6 C. Here, Cc is the cost of adding
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a segment to the sample, excluding travel cost but in-
cluding positioning cost (travel to the first segment vis-
ited from the interviewer home base and then back to
that base from the last segment visited during the data-
collection trip), and Cw is the observing cost, including
the cost of locating the segment

The solution to this problem is the optimum segment
size n0 and optimum sample size of segments n. In
addition to the budget, this optimum solution is condi-
tioned to the correlogram model parameters (a, τ).

3. Data

We used field data collected by the NSO of Spain to
illustrate our approach to the integration of continuous
ground data in the sampling design using linear mod-
els, and field data collected by the NSO of Senegal to
illustrate our approach to the integration of categorical
ground data into the sampling design using multinomial
models.

The two RS products traditionally used as auxiliary
data for crop acreage and yield estimation are pixel clas-
sification by crop type (for the former) and a set of veg-
etation indices (for the latter). For training pixel clas-
sification models, ground georeferenced data of crop
type is required. In many countries, data from the agri-
cultural sector are collected using national household or
farm surveys, and no geographic information at parcel
level is available.

Azzari et al. [22] compared several ways of gener-
ating the data needed to train pixel classification mod-
els when no such parcel-level information is available.
Focusing on integrating ground survey data of maize
in Malawi and Ethiopia from national household sur-
veys using the Sentinel-2 satellite, the authors evaluated
the accuracy of pixel classification producing georefer-
enced data at parcel level, ranging from the full parcel
boundary to only one point (centroid).

The authors concluded that collecting full-parcel
boundary data or GPS coordinates of the polygon de-
fined by complete parcel corner points yields the best-
quality information for model training; however, the use
of mid-sized sample (3000–4000 parcels) plot centroids
could perform similarly to full plot boundaries. The
authors did not consider the statistical model required
to achieve the integration of ground data with Sentinel-
2 to improve the accuracy of crop acreage estimates,
obtaining design-based consistency.

In Sen4Stat, the focus was on developing an open-
source system that permits any user to generate from

Sentinel 1 SCL Sentinel-2 L1C and/or L2A images the
RS data required to improve agricultural statistics. In
addition to vegetation indices, using cloudmask and
cloud-free mosaics for optical sensors, and for trans-
forming data from SAR sensors, the system allows the
choice of several techniques of supervised classification
(including random forest) for pixel classification and
crop-type map generation.

Raw data in spectral bands can be directly integrated
with ground data using multinomial models. Indeed, as
shown by Hogland et al. [10], using spectral-band digi-
tal numbers in conjunction with multinomial models is
a pixel classification method.

4. Results and discussion

4.1. Spain

4.1.1. Crop acreage estimates at national level
We consider the area covered by an image of size 100
× 100 km in Castilla y León (Spain), with X coordi-
nates (in meters): (300000,400000) and Y coordinates
(4600000,4700000). The sampling unit is a square seg-
ment of side 700 meters and sample size in the area is
419 segments.

Ground data are observed at parcel level. However,
we aggregated data on crop acreage at segment level
for computations, so that yi represents ground data on
acreage of the study crop in segment i. Further, the RS
data are xi = [1 xi], where xi is the number of pixels
classified as belonging to the study crop in segment i.
Model parameter estimates are B̂1π = 0.046 for the
independent term and B̂2π = 0.903 for the angular
coefficient of xi. Results for barley data observed in
2018 are in Table 1.

These results show that using RS data, estimator ac-
curacy improved considerably; the amplitude of the
confidence interval decreased and the estimation error
was reduced by half. The relative efficiency was high;
using RS data, the current sample size could be reduced
to less than one fifth without loss of accuracy. This is
so because RS data are reliable for crop acreage. These
results are design-based, which implies that the results
change with the sample design. Thus, the reduced sam-
ple should be chosen using the same design as the NSO
is currently using.

4.1.2. Crop yield estimates
Ground data on yield are observed at parcel level,

with yij representing these data for the study crop
in parcel j of segment i. The RS data are denoted
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Table 1
Barley acreage estimates in a 100 × 100 km area of Castilla y León, 2018

Uncertainty
Data Acreage 95% Confidence interval (hectares) Coeff. of Relative efficiency

(hectare) Limits Amplitude variation (%)∗ of RS data
Ground 236165.4 Lw: 215951.7 40427.2 4.37 –

Up: 256379.0
Ground + RS 228550.1 Lw: 219699.8 17700.5 1.98 5.2

Up: 237400.3
∗Quotient between root square of the sampling variance and estimate.

Table 2a
Barley yield estimates in a 100 × 100 km area of Castilla y León, 2018. NDVI

Uncertainty
Data Yield 95% Confidence interval (kg/hectare) Coeff. of Relative efficiency

(kg/hectare) Limits Amplitude variation (%) of RS data
Ground 4213.6 Lw: 4093.9 239.2 1.45 –

Up: 4333.2
Ground + RS 4155.6 Lw: 4033.2 244.9 1.50 0.95

Up: 4278.1

Table 2b
Barley yield estimates in a 100 × 100 km area of Castilla y León, 2019. LAI

Uncertainty
Data Yield 95% Confidence interval (kg/hectare) Coeff. of Relative efficiency

(kg/hectare) Limits Amplitude variation (%) of RS data
Ground 2352.0 Lw: 2227.4 249.1 2.70 –

Up: 2476.6
Ground + RS 2327.8 Lw: 2215.1 225.4 2.47 1.22

Up: 2440.6

xij = row
16l6L

(xijl), a row vector with 1 in the first po-

sition and a set of vegetation indices in the remaining
positions. The latter include the normalized difference
vegetation index (NDVI) and leaf area index (LAI) (sum
of LAI simulated by a Savitsky-Golay interpolation, fit-
ting all LAI observations in the growing season) during
(i) sprouting, (ii) flowering, and (iii) ripeness, plus (iv)
maximum value of the LAI S-G interpolation and yield
simulated by the simple algorithm for yield (SAFY)
crop-growth model. Results for barley data observed in
2018 are in Table 2a for NDVI only and in Table 2b for
LAI and yield simulated by SAFY.

The relationship between crop yield and the vegeta-
tion indices is statistically significant. However, their
correlation is not as strong as for crop acreage and as
a result, using RS data, yield estimator accuracy im-
proves little. Using RS data, the estimation error is of
the same order of magnitude as using only ground data.
The relative efficiency is nearly 1; using RS data, the
current sample size could be reduced little without loss
of accuracy. This is because RS data reliability for crop
yield is not as great as for crop acreage. Additional
research is required to make the production estimates

more reliable through an improved estimate for yield
from RS; physically based models are more reliable and
can be integrated with RS data.

4.1.3. Crop production estimates
We estimate crop production as the product of the

crop acreage and yield estimates. Results are in Table 3.
Thanks to improvement in the crop acreage estima-

tor using RS data, the production estimator accuracy
increased considerably; the estimation error decreased
by half, even if the RS data failed to improve the yield
estimate.

4.1.4. Crop acreage estimates at province level
To illustrate provincial estimation using areal sam-

pling, we consider barley acreage estimates at the
provincial level within the 100 × 100 km area of
Castilla y León (Spain). Results are in Table 4.

The estimate accuracy at provincial level is, as ex-
pected, less than at the national level, but the RS rel-
ative efficiency is of the same order of magnitude. In
provinces where the sampling error using only ground
data is very high (León), the RS contribution is qual-
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Table 3
Barley production estimates in a 100 × 100 km area of Castilla y León, 2018

Uncertainty
Data Production 95% confidence interval (tons: 1000 kg) Coeff. of

(tons) (1000 kg) Limits Amplitude variation (%)
Ground 987841 Lw: 903640 168402 4.35

Up: 1072042
Ground + RS 965733 Lw: 915194 101078 2.67

Up: 1016272

Table 4
Barley acreage estimates at provincial level

Province Using only ground data Using ground & RS data Relative efficiency
Acreage (has.) Error (CV%) Acreage (has.) Error (CV%) of RS data

León 6853.2 24.15 6834.5 16.20 2.3
Palencia 88602.0 7.36 90535.3 3.33 4.7
Valladolid 128209.5 5.57 119707.4 2.66 5.1
Zamora 12324.2 17.71 10948.2 8.16 6.4
Total area 235989.1 4.37 228028.5 1.98 5.2

Table 5
Barley acreage estimates at municipality level

Municipality Sample Acreage
size Hectares Coeff. of

(segments) variation (%)
Belver de los Montes 1 212.96 29.1
Castroverde 3 2914.22 8.0
Pinilla de Toro 4 963.30 10.0
Quintanilla del Monte 1 466.65 20.3
Toro 1 615.91 14.0
Vezdemarbán 3 1358.22 12.6
Villalpando 2 560.05 39.1
Villamayor de Campos 1 1056.23 11.1
Villanueva del Campo 1 784.03 13.2
Villar de Fallaves 1 844.16 11.0
Villardondiego 1 516.40 11.5
Villavendimio 1 656.07 10.4
Total Zamora 20 10948.20 8.2

itative in the sense that it allows the estimates to be
labeled as official statistics by reducing the coefficient
of variation below the standard limits (20%) considered
acceptable in official statistics.

4.1.5. Crop acreage estimates at the municipality level
based on linear mixed models

To illustrate small-area estimation using areal sam-
pling, we consider barley acreage estimates at munici-
pality level in that part of Zamora province within the
100 × 100 km area of Castilla y León (Spain). Results
are in Table 5.

Considering that the sample size at municipality level
is small or null, the accuracy of municipality estimates
is good, thanks to the RS contribution. In most mu-
nicipalities, the estimates could be labeled as official
statistics because the coefficient of variation is smaller

than the standard limit (20%), even when the sample
size is only one sampling unit

4.2. Senegal

4.2.1. Crop acreage estimates in Nioro Department
To demonstrate crop acreage estimation using point

sampling and multinomial models, we consider the
Nioro Department of Senegal, in the Kaolack Region.
The ground data were observed in a sample of 345
points pixels selected using a list frame. The source
of RS data is a crop-type map. In fact, we used a dual
frame, since we complemented the NSO list frame with
an area frame based on satellite images, in which agri-
cultural areas were distinguished from non-agricultural
areas and were stratified into crop types.

In this case, the NSO list frame alone is not suffi-
cient to integrate field and RS data This is because the
number of pixels in the agricultural areas is required for
expanding the sample estimates to the entire population.
This expansion factor is provided by the area frame.

We focus on the two main crops (millet and ground-
nut) observed in the field sample. The remaining crops
(mainly maize) are included in a third category (K = 3)
called other, whose probability estimate is one minus
the estimate’s probability of millet and groundnut. The
RS data are coded according to the Earth Observa-
tion (EO) crop type into which pixels are classified:
xi = [1 0 0 0] for any pixel i in the EO class maize,
xi = [0 1 0 0] for any pixel i in the EO class millet,
xi = [0 0 1 0] for any pixel i in the EO class groundnut,
and xi = [0 0 0 1] for any pixel i in the EO class other
crops. Model parameter estimates are in Table 6.
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Table 6
Model parameter estimates (B̂πmillet and B̂πgroundnut)

Crop EO crop type map
Maize Millet Groundnut Other crops

Millet −0.010655 1.47958334 0.88931346 8.76504093
Groundnut −0.659204 −0.59871700 2.89873948 1.21898514

Table 7
Crop acreage estimates, Nioro (Senegal)

Uncertainty
Crop type Hectare Standard Coefficient of Limits of 95% confidence interval

error variation (%) Lower Upper Amplitude
Millet 89215 3661.1 4.11 81978.8 96330.4 14351.5
Groundnut 78815 2923.9 3.71 73089.1 84550.9 11461.8

Table 8
Efficiency of RS data for crop acreage estimation Nioro (Senegal)

Standard errors of proportion estimators Relative efficiency
Crop type Using only ground data Using ground & RS data of RS data
Millet 3.37 1.90 3.13
Groundnut 3.34 1.52 4.80

Table 9
Confusion matrix based on the sample

Ground data Number of pixels in the EO class (%)∗

Crop Number of points/pixels in the sample Maize Millet Groundnut Other
Maize 48 9 (18.8) 26 (54.2) 12 (25.0) 1 (2.0)
Millet 134 10 (7.4) 97 (72.4) 23 (17.2) 4 (3.0)
Groundnut 163 5 (3.1) 14 (8.6) 143 (87.7) 1 (0.6)
Total 345 24 137 178 6
∗% Percentage of pixels correctly classified.

Crop acreage estimates of millet and groundnut based
on ground and RS data are in Table 7.

We evaluate the RS data efficiency RERSk for the
acreage estimation of millet and groundnut. Results are
in Table 8.

The effect of integrating RS data in the ground sam-
ple data was a reduction in the sampling error of millet
and groundnut and, as a result, in the confidence in-
terval of these two crops, without loss of design-based
consistency. In other words, using RS data, the cost
of estimating millet and groundnut acreage could be
reduced to less than a third of the current cost, without
loss of accuracy. These results are design-based, so it
is understood that the reduced sample size should be
selected using the currently sampling design used by
the NSO.

4.2.2. Estimation directly based on pixel classification
There is consensus in the official statistics commu-

nity on using methods providing design-consistent esti-
mates of the population characteristics under study and

measures of estimator uncertainty, such as sampling er-
ror, coefficient of variation, or confidence intervals. The
method proposed in this paper for integrating RS data
in the NSO sampling design agrees with this consensus.

Although the proposed approach allows for any form
of RS data, including raw reflectance data in the form
of pixel digital numbers, we focus on the use of crop-
type maps as auxiliary information. In this context, a
natural question that arises is: Why not directly use the
number of pixels in each EO croptype class to estimate
crop acreage instead of using it as auxiliary data in a
statistical model?

We follow the suggestion of a referee to clarify this
question, comparing the results of our design-based ap-
proach (shown in Table 7) with estimates directly based
on the croptype map. The comparison is necessarily
limited to the crop acreage estimates because the usual
algorithms used for croptype map generation do not
provide measures of uncertainty comparable to those of
Table 7.

Using a random forest classifier, four EO crop types
were considered in the croptype map of Nioro: maize,
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Table 10
Probability that the cover of a pixel of the EO class j is the crop k

EO class (j) Millet (k = 1) Groundnut (k = 2) Maize & Other_crops (k = 3)

Maize (j = 1) 0.395 0.206 0.399
Millet (j = 2) 0.739 0.093 0.168
Groundnut (j = 3) 0.113 0.841 0.046
Other (j = 4) 0.997 0.001 0.002

Table 11
Estimates number of pixels, N̂k

EO class
Estimates of the number of pixels covered by

crop k in each EO crop type class,
N̂kj = Nj × µ̂kj

Crop type (j) Number of pixels Millet Groundnut Maize & Other
Nj (k = 1) (k = 2) (k = 3)

Maize (j = 1) 1032628 407587 213088 411953
Millet (j = 2) 9470572 7000329 876040 1594203
Groundnut (j = 3) 8076448 910538 6791735 374175
Other (j = 4) 604853 603038 605 1210
Estimates of the total num-
ber of pixels by crop N̂k =∑J
j=1 N̂kj

19184501 8921492 7881468 2381541

Table 12
Crop acreage estimates at the district (arrondissement) level, Nioro (Senegal)

Arrondissement Millet Groundnut
Acreage (has.) Error (CV%) Acreage (has.) Error (CV%)

Medina Sabakh 20067.2 8.6 19765.3 7.3
Paoskoto 38316.0 5.3 35018.2 4.0
Wack Ngouna 30831.7 11.9 24030.7 10.7
Total Nioro 89215,0 4.1 78815,0 3.7

millet, groundnut, and others. The remaining pixels
were classified in a non-agricultural landuse class. The
number of pixels in each EO croptype class is in Ta-
ble 11.

As seen in Table 9, there is uncertainty in the pixels
classification and any estimate based on it are subject
to this uncertainty. Most pixels of millet in the sample
(72.4%) are correctly classified in the EO class mil-
let, but a non-negligible percentage of them were con-
founded with groundnut (17.2%), maize (7.4%), and
others (3.0%). For groundnut, the percentage of pixels
that were correctly classified is higher (87.7%) than for
millet, but the confusion with millet (8.6%) and maize
(3.1%) is non-negligible.

In the proposed approach, the multinomial logit
model is used for estimating the probability µkj that
the crop covering a pixel classified in the EO class j is
actually crop k. The model parameter estimates are in
Table 6 and the probability estimates are in Table 10.

To estimate the number of pixels Nkj in EO class
j that are actually covered by crop k, we multiplied
the total number Nj of pixels in EO class j by the
estimator of the aforementioned probability µ̂kj : N̂kj =

Nj × µ̂kj . The estimator of the total number of pixels
covered by crop k in Nioro, N̂k =

∑J
j=1 N̂kj is the

sum of the estimators in each EO class. This estimator
is design-consistent and the estimates based on it are in
Table 11.

Both the number of pixels in EO crop type millet
(9470572, i.e., 94705.72 hectares, as a pixel represents
100 m2) and in EO crop type groundnut (8076448, i.e.,
80764.48 hectares) are larger than the design-based
number estimates: 8921492 (89214.92 hectares) for
millet and 7881468 (78814.68 hectares) for groundnut.
For millet, the difference was 5490.8 hectares (6.2%)
and for groundnut 1949.8 hectares (2.5%). For the for-
mer, the difference is greater than the design-based stan-
dard error (3661.10 hectares) and the coefficient of vari-
ation (4.11%). For the latter the difference is smaller
than the design-based standard error (2923.94 hectares)
and the coefficient of variation (3.71%). These differ-
ences are not statistically significant, since the estimates
directly based on the EO croptype classes are within
the design-based confidence limits, namely, [81978.88,
96330.4] hectares for millet and [73089.15, 84550.98]
hectares for groundnut.
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However, the comparison must focus not on the re-
sults, which are always uncertain, but on the methods.
The methods make the major difference; whereas the
design-based estimators are in the mainstream of offi-
cial statistics, the estimators based directly on croptype
maps are not. The proposed approach provides design-
consistent estimates together with the usual measures
of uncertainty (sampling error, coefficient of variation,
and confidence intervals). The two main objections to
estimators based directly on the croptype map are that
(i) they are not design-consistent and (ii) the usual un-
certainty measures are not available.

4.2.3. Crop acreage estimates at district level in Nioro
Department

To illustrate crop acreage estimation at district level
using point sampling and multinomial models, we con-
sidered the three districts (arrondissements) of Nioro,
Medina Sabakh, Paoskoto, and Wack Ngouna. The es-
timates are in Table 12.

The estimate accuracy at district (arrondissement)
level is, as expected, lower than at the national level.
However, the sampling error is within the standard limit
(coefficient of variation < 20%) for labeling as official
statistics.

The differences between the number of pixels in the
EO crop type millet and the design-based estimate of the
number of pixels covered by millet are smaller than the
sampling error in Medina Sabakh (0.7%) and Paoskoto
(4.1), and larger than the design-based estimate in Wack
Ngouna (12.4%). The differences between the num-
ber of pixels in the EO crop type groundnut and the
design-based estimate of the number of pixels cov-
ered by groundnut are smaller than sampling error in
the three districts: Medina Sabakh (3.4%), Paoskoto
(2.5%), and Wack Ngouna (1.2%).

5. Concluding remarks

A result well established in the literature is that RS
data improve the cost-efficiency of design-consistent
crop acreage estimators based on linear models and sim-
ple area samples of georeferenced polygons (segments).
The strong RS reliability for crop acreage estimation
facilitates a notable improvement of crop production
estimates, even if RS data are not sufficiently reliable
for yields.

However, many countries use complex list samples of
non-georeferenced households or farms for agricultural
statistics. We have demonstrated in this paper that with

the use of multinomial models, a point georeferenced by
parcel in these complex samples is sufficient to enhance
the cost efficiency of design-consistent, national-level
crop acreage estimators using RS data.

The open-source Sen4Stat system is being designed
in such a way that any NSO can use it to improve the
cost efficiency of the procedure currently used to obtain
crop acreage and production estimates, at both national
and minor administrative area levels (province and mu-
nicipality). The only inputs required by the system are
the observed data in the sample currently designed by
the NSO for field data collection. The system allows for
both a segment simple sample, based on area frames,
and a point complex sample, based on list frames of
households/farms. In both cases, the system generates
from Sentinel images a crop-type map and integrates it
with ground data, using linear models in the segment
case and multinomial models in the point case.

We have extended the method developed in this pa-
per to two additional RS applications, multi-season es-
timates and optimization of the sample design. Addi-
tional work is required to obtain the data required to
test these two additional RS applications.
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