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Abstract. In this paper, we bring to attention the problem of model selection with conflicting criteria in general and in annual
reviews of seasonal adjustment in particular. Although partial concurrent seasonal adjustment and annual reviews are recommended
by Eurostat, the problem of model selection in such reviews is seldom discussed in the literature, and our study is an attempt to fill
this gap. In these reviews, revisions caused by model changes are very undesirable. The trade-off between different diagnostics,
M- and Q-statistics, numbers of outliers, and revisions is hard to make to select the best model. In this study, a customary model
selection procedure is described. Furthermore, we argue for using the manually chosen models as the “true” models, which makes
it possible to employ a supervised machine learning-like approach to select weights for these diagnostics. It shows that this
approach could work equally well as (if not better than) human statisticians, and thus facilitates an automatized procedure for
model selection in such annual reviews. Although the approach has limitations as we describe, it is, to our best knowledge, the first
study of its kind in the literature.
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1. Introduction

Seasonal adjustment is a fundamental step in the pro-
duction of official statistics, which identifies and re-
moves the seasonal fluctuations and calendar effects,
such that the decision-makers and analysts can better
understand the short and long-term movements in the
time series [1]. The methodologies for seasonal ad-
justment have been developed constantly and the lit-
erature is huge, but the number of methods used in
producing official statistics is quite limited. Much ear-
lier works, such as the development of the US Cen-
sus X-11 program by Shiskin et al. [2] and Cleve-
land and Tiao [3], can be found in the review by
Pierce [4]. Later, Gómez and Maravall [5] proposed a
parametric approach (called TRAMO-SEATS) based
on the ARIMA (autoregressive integrated moving av-
erage) family, which has been successively adopted by
the Census X-12-ARIMA and X-13a-Seats programs
(cf. [6] and [7]). Although there are other seasonal ad-

justment methods using for example structural time se-
ries models ([8]), those methods cannot produce equally
interpretable seasonally adjusted results and have never
gained the same popularity in the official statistics as
the X-12-ARIMA or the TRAMO-SEATS programs.

In the practice of seasonal adjustment in a national
statistical office (NSO), the question is very common
how often the practitioners may review the ARIMA
models used in seasonal adjustment. The possible op-
tions are described in the ESS guidelines on Seasonal
Adjustment [1]. Thereby, Eurostat recommends a par-
tial concurrent revision policy, i.e., the models are to be
re-identified once a year while the coefficients of the
models may be updated instantly.

There is one important difference in such annual re-
views compared with other occasions for model se-
lection. In those reviews, the revisions caused by the
change of models are highly undesired by both users
of statistics and subject staff. For example, an in-
tern guideline from the US Census Bureau described
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that “. . . large revisions may damage the Census Bu-
reau’s credibility for producing high-quality data prod-
ucts” [9]. Consequently, we cannot rely only on sta-
tistical diagnostics at hand for model selection and a
trade-off often has to be made between, for instance,
a better fitness of a model and a smaller revision. As
we will show in Section 2, it is not easy to make such
trade-offs and it depends sometimes on experiences or
even on personal preference.

The standard automatic model selection proce-
dure implemented in X-12-ARIMA [10] or TRAMO-
SEATS [11], relies heavily on the Akaike information
criterion (AIC) [12] or its variants such as Hannan and
Quinn criterion or the Bayesian Information Criterion
(BIC) [10, Section 5.5]. However, the AIC and the re-
lated measures are less applicable in the annual reviews
since they do not consider the revision problem. Be-
sides, these measures are based on the maximum like-
lihoods of an underlying model and thus strongly af-
fected by the number of outliers identified with that
model. Incorporating more outliers normally improves
the goodness of fitness of a model for the analyzed
time series by increasing the likelihood and reducing
the AIC or BIC. At the same time, a model is usually
considered to be bad if it includes too many outliers, al-
though there is no solid critical value for the acceptable
number of outliers. Hence, solely using AIC or BIC
to compare models with different numbers of outliers
will be misleading in most cases and should be avoided
([10, p. 48]).

In this paper, a customary procedure for such an an-
nual review applied in the seasonal adjustment pro-
cedures at Statistics Sweden is described, where the
main statistical diagnostics, including revision errors,
are listed and evaluated. The problem of model selec-
tion becomes obvious when there are no criteria for the
trade-off between different diagnostics and/or revisions.
To solve the problem, we propose to use the previous
human-chosen models as the “true” ones. Following
this proposal, we can rank these diagnostics and employ
an approach like a supervised machine learning (ML)
algorithm (cf. [13] and [14]) to select “optimal” weights
among different diagnostics. To our best knowledge,
this is the first study of this kind in the literature. De-
spite some limitations of this ML-inspired approach,
we are going to show that this approach can work well,
which makes it possible for us to build an automatic
procedure for model selection, based on the obtained
weights in the annual reviews of seasonal adjustment.

The remainder of this paper is organized as follows.
Section 2 recalls the background of the partial concur-

rent revision policy of seasonal adjustment and intro-
duces a customary procedure for model selection in an-
nual reviews. The problem of how to select models and
trade-offs between different diagnostics is discussed.
In Section 3, the implementation and the result of an
ML-inspired approach are presented. The paper ends
with discussions and final remarks in Section 4.

2. Model selection in annual reviews

In the mainstream seasonal adjustment programs X-
12-ARIMA [9] and TRAMO-SEATS [5], ARIMA mod-
els are used in the pretreatment step to handle missing
values, forecasting, and backcasting to extend time se-
ries, deterministic exogenous variables such as calendar
adjustment variables, and outliers. Ensuring the high
quality of these ARIMA models is very important for
the total quality of the seasonal adjustment. Therefore, it
is a common question how often the practitioners in an
NSO should review and eventually change the ARIMA
models. The ESS Guidelines on Seasonal Adjustment
[1, Section 4.2] lists four possible revision policies: the
current adjustment, the concurrent adjustment, the par-
tial concurrent adjustment, and the controlled current
adjustment. Please see [1] for the details and discus-
sions. The alternative recommended by [1] in an or-
dinary statistical production is the partial concurrent
revision policy, that is to say, “the model, filters, outliers
and calendar regressors are re-identified once a year
and the respective parameters and factors re-estimated
every time new or revised data become available” [1].
This revision policy is believed to be able to balance
the accuracy of the models and the reduced revisions
caused by model changes.

Although the annual review is a common and im-
portant step in the practice of seasonal adjustment for
NSOs, the procedure and the methodology of model se-
lections in such reviews are seldom discussed. There are
works dedicated to specific diagnostics such as sliding
spans [15] or the adequacy of seasonal adjustment [16],
to the comparison of direct and indirect adjustment (cf.
works in [17]), or some intern guidelines such as [9].
However, no research is available in the literature for
model selections in annual reviews. Our study is an
attempt to bring it to attention and attract more contri-
butions in this area.

A customary review procedure usually begins with
summarizing different statistical diagnostics (probably
with different statistical programs). In this study, we
use the Swedish Production Value Index (PVI) as an
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Table 1
An example with summarized diagnostics and revision errors for Industry 20+21 (the statistics in the parentheses)

Industry NACE_20_21 NACE_20_21 NACE_20_21 NACE_20_21 NACE_20_21 NACE_20_21
Model ID Current used Model 1 Model 2 Model 3 Model 4 Model 5
Transform ADD MULT MULT MULT MULT MULT
Constant 0 0 0 0 0 0
P 0 0 0 1 2 1
D 1 1 1 1 1 1
Q 1 1 2 1 1 2
BP 0 0 0 0 0 0
BD 1 1 1 1 1 1
BQ 1 1 1 1 1 1
Season Present Present Present Present Present Present
Skewness Not normal (1.88) Normal (0.45) Normal (0.5) Normal (0.5) Not normal (0.64) Not normal (0.64)
Gearys_a Not normal (0.65) Normal (0.79) Normal (0.77) Normal (0.78) Normal (0.77) Normal (0.78)
Kurtosis Not normal (9.47) Normal (3.21) Normal (3.64) Normal (3.64) Normal (4.03) Normal (3.44)
ACF Not Ok (0.0059) Ok (0.477) Ok (0.3743) Ok (0.3411) Ok (0.1563) Ok (0.1002)
Q1 Not Ok (1.182) Not Ok (1.255) Not Ok (1.215) Not Ok (1.209) Not Ok (1.206) Not Ok (1.181)
Q2 Not Ok (1.262) Not Ok (1.296) Not Ok (1.276) Not Ok (1.27) Not Ok (1.247) Not Ok (1.236)
BIC 1080.89 1027.20 1036.49 1037.58 1032.18 1015.68
N_outliers 3 3 2 2 3 5
Outliers TC01FEB2012

TC01MAY2012
AO01SEP2020

AO01FEB2012
LS01DEC2018
AO01SEP2019

AO01FEB2012
LS01DEC2018

AO01FEB2012
LS01DEC2018

TC01FEB2012
TC01MAY2012
LS01DEC2018

TC01FEB2012
TC01MAY2012
AO01SEP2018
LS01DEC2018
AO01SEP2020

rev1 0.00 0.06 0.01 0.01 0.01 0.05
rev2 0.00 2.38 1.84 1.86 1.95 1.96
rev3 0.00% 2.00% 1.58% 1.59% 1.68% 1.65%
RSF Ok (0.52) Ok (0.34) Ok (0.49) Ok (0.49) Ok (0.53) Ok (0.68)

example for illustration, but the analysis could be gen-
eralized to many other types of data. Table 1 is a sum-
mary of the NACE-industry 20+21 (Manufacture of
chemical products and Manufacture of pharmaceutical
products, NACE: Statistical Classification of Economic
Activities in the European Community), from the cur-
rently used model and five other models (summaries
for other industries are omitted in Table 1 for the sake
of space). The first 9 rows define roughly an ARIMA
model, and the other rows are for different diagnos-
tics from the corresponding model. The diagnostics
demonstrated here include those from the test of the
existence of seasonality (row “Season”), the normality
test (“Skewness”, “Gearys-a”, “Kurtosis”), the resid-
ual autocorrelation (“ACF”), summarized M-statistics
(“Q1”, “Q2”), BIC, the number of outliers, the outliers,
the revision errors compared with the currently used
models (“rev1”, “rev2”, “rev3”), and the test of the ex-
istence of residual seasonality (“RSF”). We refer to [10]
the detailed descriptions of these diagnostics. For the
revision errors, there are three different measures calcu-
lated. Denote {Y 0

t }, t = 1, . . . , N as the seasonally ad-
justed data of one series using the currently used model,
and analogy {Y i

t } using the model i, the revision errors

are defined respectively as rev1 = 1
N

N∑
i=1

(Y i
t − Y 0

t ),

rev2 = 1
N

N∑
i=1

|Y i
t − Y 0

t |, and rev3 = 1
N

N∑
i=1

∣∣∣Y i
t −Y 0

t

Y 0
t

∣∣∣.
Some explanations and remarks are necessary for the

content in Table 1, as listed below.

1) How to define a unique model is not trivial. In
Table 1, the trend (Henderson) and seasonal fil-
ters are not included but are chosen automatically
with default criteria [6] for different models. Oth-
erwise, models with the same ARIMA parameters
but different filters should reasonably be consid-
ered as different models. Similar reasoning ap-
plies to models with the same ARIMA parameters
but different outliers; such models are treated as
different models in this study.

2) Obviously, there are other possible statistical di-
agnostics. It is not our intention to list out all pos-
sible diagnostics in the study but to illustrate a
basic working procedure.

3) It is neither our intention to give an optimal bal-
ance for different types of diagnostics in the sum-
mary. For example, there are 3 different normality
tests and 3 revision error measures but only one
BIC.
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4) Six models are included in Table 1 for the Indus-
try NACE 20+21, including the currently used
model for the series and the 5 best models identi-
fied by the X-12-ARIMA program [6]. For other
industries, an additional Airline model may be
added if it is not already included. The best model
in most cases is among these candidate models.
However, it should be right straightforward to in-
crease the number of candidate models if needed.

The second step in the procedure involves an in-
spection of the different models with different diag-
nostics and trying to find the best model. However,
the main problem here is how to select the best model
when different diagnostics conflict with each other. The
normal automatic model selection procedure in X-12-
ARIMA [6] and TRAMO/SEATS [5] relies heavily on
the BIC measure. As we can see from Table 1, the BIC
measure is not readily applicable in this case. For ex-
ample, Model 5 has the smallest BIC measure for this
series, however, there are 5 outliers identified compared
with 2 or 3 outliers for other models. It is not strange
that the BIC for Model 5 should be lower. Besides,
there are no criteria for the trade-off between BIC and
the revision errors; for instance, one can ask how much
decrease of the BIC measure is acceptable for a 1% less
revision of Rev2. The same issue applies also to the
trade-off of other diagnostics.

The occurrence of outliers not only affects the com-
parison of BIC but also other diagnostics such as
the normality test and the revision errors. Our expe-
rience shows that it is, above all, the occurrence or
change of outliers that causes the most significant re-
visions. The interaction between BIC, outliers, and re-
visions further complicates the model selection prob-
lem. The default critical value for outlier identifica-
tion in X-12-ARIMA [10] is developed from a simula-
tion study [18] and depends on the length of the series,
while TRAMO/SEATS [3] uses 3.5 as the default crit-
ical value for outlier identification, and no more than
5% of the number of observations as guiding principle
for the number of outliers allowed in a series. Please
see [19] for discussions of the choice of critical val-
ues. The question of what critical value should be used
for outlier identification and how many outliers should
be allowed in a series is in its own right an issue that
deserves more research.

As we have seen, in many cases there are no readily
available statistical criteria to guide the trade-offs be-
tween different models. The model selection in annual
reviews is not only a science but also an art that de-
pends on personal experience or preference. In Statis-

tics Sweden, there is a conservative principle applied in
model selections, saying that if there is no better model
available do not change the current model, which is
in the same spirit as [9], to reduce unnecessary revi-
sions. In other cases, a practical convention is applied
to guide the comparison of the importance of different
diagnostics when there are conflicts. Among them is

RSF > Residual Normality > Revisions >

M(Q)Statistics > BIC > Number of outliers >

Existence of Seasonality > ACF (1)

The guideline of Eq. (1) is based on our experience
and preference. In the US Census Guideline [9], the
emphasis is put to eliminate the RSF and to minimize
revisions, as well as a sensible choice of outliers, which
is basically in the same line as Eq. (1). The Guideline [9]
doesn’t cover other diagnostics.

3. Automatizing and a machine learning-inspired
approach

Without clear guidance, there will be personal de-
pendence problems in model selections and the repro-
ducibility of the output cannot be guaranteed. Besides,
it will lead to higher demand for time and human re-
sources for the model selection in annual reviews. Af-
ter all, there are thousands of seasonally adjusted time
series from the Swedish official statistics system that
require an annual review. To streamline the annual re-
views and mitigate the aforementioned problems, one
possible way would be to standardize and automatize
the procedure of model selection. We explore the pos-
sibility below.

3.1. Ranking the diagnostics

One could rank the diagnostics first to facilitate the
comparison of different models. For example, having
ranked tied values with the mean of their ranks, the
ranks for the diagnostics in Table 1 are shown in Ta-
ble 2. The number of outliers and the outliers are ex-
cluded from Table 2, partly because it is unclear how to
rank them, and partly as we mentioned before, the most
effects of change of outliers should be covered by the
revision errors. We rank the BIC measures differently
only when the measures differ by not less than 2, a con-
vention implemented in X-12-ARIMA [10]. A similar
convention is applied to Rev1, Rev2, and Rev3, and
they are ranked differently when their values differ by at
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Table 2
The rank of the diagnostics in Table 1 (except the outliers and number of outliers)

Industry NACE_20_21 NACE_20_21 NACE_20_21 NACE_20_21 NACE_20_21 NACE_20_21
Model ID Current used Model 1 Model 2 Model 3 Model 4 Model 5
Season 3.5 3.5 3.5 3.5 3.5 3.5
Skew 5 2 2 2 5 5
Gearys_a 6 3 3 3 3 3
Kurtosis 6 3 3 3 3 3
ACF 6 3 3 3 3 3
Q1 3.5 3.5 3.5 3.5 3.5 3.5
Q2 3.5 3.5 3.5 3.5 3.5 3.5
BIC 6 2 4.5 4.5 3 1
rev1 1.5 6 1.5 4 3 5
rev2 1 6 3.5 3.5 3.5 3.5
rev3 3 6 3 3 3 3
RSF 3.5 3.5 3.5 3.5 3.5 3.5

least 5% (or at least 0.05 when compared with zero for
Rev1 and Rev2, and at least 0.005 for Rev3). Please ob-
serve that ranking continuous variables this way could
lead to a transitivity problem. Non-transitivity is as-
sumed in our study. The discussion of transitivity is out
of the scope of this paper and the readers with inter-
est are referred to decision theory [20] and references
therein.

3.2. True models?

In the next course of action, we could weigh different
diagnostics and obtain a summarized rank for different
models. However, an unavoidable obstacle is that we
do not have the true models to evaluate the best-ranked
models. Simulation studies could be a possible way to
walk around the obstacle, but a simulation study would
significantly alter the character of the problem in ques-
tion. In our study, we are instead inspired by the rapid
development of ML methods [13]. For example, to train
a supervised ML algorithm, an important prerequisite
is the labeled true targets. It is towards the true targets
that the machine is to tune its models and parameters
and learn from the data. Analogously, we propose here
to use the human-chosen models as the “true targets”,
and then to find optimal weights to weight different
diagnostics such that the chosen models from this ap-
proach would be as close to the manually chosen mod-
els as possible. We call it an ML-inspired approach.
There are two arguments for our proposal. First, those
models are the best possible models available at hand.
More importantly, our main purpose is not to find the
optimal models, which we, unfortunately, do not have
the answer to, but rather to explore the possibility to
standardize and automatize our working procedure for
model selection in annual reviews.

Needless to say, the eventual best weights can only

apply to this data set, as we have to re-train the weights
for other data, which is the case for almost all ML
algorithms.

3.3. Settings to train the weights

Our goal of this ML-inspired approach is thus to find
the weights {wi} for different diagnostics in Table 2,
such that as many of the best-ranked models are the
same as the manually chosen models as possible. That
is to say, the accuracy metric is defined as

Acc(wi) =

#(Industries that the approach
chose the same model as human)

total number of industries
,

and our goal is to find the optimal weights {w∗
i }, i =

1, · · · , 12, such that

{w∗
i } = argmaxwi

(Acc).

Our data for PVI consists of 87 NACE industries
or main industrial groups. We randomly split the data,
about 75% of the total or 66 industries, as the train data,
and the remaining as the test data set.

For the 12 diagnostics in Table 2, a loop is designed
to assign values 1, 41 and 81 in turn to each diagnostic
measure. The weight for diagnostic i, i = 1, · · · , 12,
is thus wi = Ki∑12

j=1 Kj
, where Ki = {1, 41, 81}. The

range of weights for each diagnostic is from 0.11%(
≈ 1

11∗81+1

)
to 88%

(
≈ 81

11∗1+81

)
, which we believe

is a reasonable range. The number of loops is 312 =
531441, which is moderate. We use the SAS R© software
for this study and an increase to 412 = 16777216 loops
would cause some capacity problems. Please note that
the number of loops is roughly equal to the number of
combinations of different weights and should be enough
for our purpose.
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Table 3
One set of the best weights

BIC rev1 rev2 rev3 Season Skewness Gearys kurtosis Q1 Q2 ACF RSF
0.27% 0.27% 11.02% 11.02% 0.27% 0.27% 11.02% 11.02% 21.77% 0.27% 11.02% 21.77%

Table 4
Series with mismatched models using the weights from Table 3 and comments

NACE Manually chosen Chosen by ML-approach

Model Comments Model Comments
10+12 Model1 BIC: 695.5. 0 outlier. Revision. Current ACF: not Ok. BIC: 686.9. 1 outlier.
16.2 Model1 BIC: 835. 0 outliers. Revision. Current BIC: 830.7. 1 outlier.
17.11 Model1 BIC: 878.9. 0 outlier. Revision. Current BIC: 883.6. 0 outlier.
19 Model1 No season. BIC: 979.7. 2 outliers. Revision. Current No season. BIC: 991.4. 3 outliers.
20+21 Model1 BIC: 1027.2. 3 outliers. Higher Rev. Model2 BIC: 1036.5. 2 outliers.
21 Model1 BIC: 1136.5. 3 outliers. Higher Rev. Model2,3,4 BIC around 1145. 2 outliers.
27 Model1 BIC: 851.8. 2 outliers. ACF not Ok. Model4 BIC: 860.6. 2 outliers. Similar Rev.
29+30 Model1 BIC: 865.7. 3 outliers. Revision. Current BIC: 975.2. 2 outliers.
30 Model2 BIC: 963.4. 9 outliers. Better Rev1. Model5 BIC: 927.5. 11 outliers. Better Rev2.
32 Model1 BIC: 837. 2 outliers. Revision. Current BIC: 840.6. 2 different outliers.
36–39 Current BIC: 821.5. 0 outlier. ACF not Ok. Model2 BIC: 815.2. 1 outlier. ACF Ok. Rev.
51 Current BIC: 781.7. 3 outliers. Model1 BIC: 781.7. 3 outliers (1 different type). Revision.
58 Model1 BIC: 977.6. 4 outliers. Revision. Current BIC: 991.8. 3 outliers.
85 Model1 BIC: 698.4. 2 outliers. Revision. Current BIC: 714.8. 0 outlier.
90–93 Airline BIC: 822.5. 1 outlier. Revision. Current BIC: 806.2. 3 outliers. Skewness and Q1 not Ok.
94–96 Model2 BIC: 761.7. 4 outliers. Revision. Current BIC: 765.3. 4 outliers (1 different). Gearys-a Test not Ok.
90–96 Model1 BIC: 709. 4 outliers. Revision. Current BIC: 720.4. 4 outliers (1 different).

Note also that we have not tried to balance the un-
even numbers of different types of diagnostics (e.g., 3
normality tests vs 1 BIC) in this approach. Once again,
it is because we are not attempting to find the optimal
model, but to search for the optimal weights {w∗

i } for
the diagnostics.

3.4. The result and discussions

3.4.1. The result with discussions
For the train data set, the highest accuracy score is

84.8%. I.e., for 56 series over 66 in the train data, the
best weights yield a model that is the same as the manu-
ally chosen. Applying those best weights to the test data
set, the average accuracy score is 73%, which indicates
overfitting to some degree. The average score for the
whole data set is about 82.8%. We also considered a
benchmark scenario where all 12 diagnostics have equal
weight. In this scenario, the accuracy score is about
69% for the whole data set.

The best accuracy score (about 83%) is to some ex-
tent lower than our expectation. This score seems not
to be much higher than the benchmark scenario (69%).
However, it is worth noting that all diagnostics have
been ranked in the beginning. If there is no conflict
among different diagnostics for a time series, it would
be easy to pick up the best model by simply choosing
the model with the best-ranked diagnostics. It explains

the relatively high score of the benchmark scenario. It
is undoubtedly of greater interest for us to study cases
with conflicting diagnostics.

To better understand this ML-inspired approach, us-
ing the chosen weights shown in Table 3, we list all
series (industries) with mismatched models in Table 4.

In Table 4, in addition to the chosen models for each
series, we include those diagnostics that are different
for the competing models, hoping that they might ex-
plain why the outcome from the ML-inspired algorithm
differs from the manually chosen one. Other diagnostics
are omitted for the sake of space. From Table 4, some
observations can be made.

I) The ML-inspired approach works pretty well.
In almost all of the 17 series in Table 4, there
are no clearly outperforming models, even if we
inspect them closer afterward. In those cases,
difficult trade-offs have to be made between BIC
and revision errors, both of which are mainly
caused by different (numbers of) outliers. Only
in one case for NACE 51, we may prefer the
manually chosen model (given that the change of
outlier type in the model chosen by the approach
is not justified; see III below). In all other cases,
we see no reason why we cannot use the models
chosen by the ML-inspired approach.
In addition, we carried out a Kolmogorov-
Smirnov test [21] on the empirical distribution
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functions (EDFs) of forecasting errors from the
two competing models. Our main study was
based on the Swedish PVI data until September
2021. Following [22], one-step ahead forecast-
ing errors between October 2021 and December
2022 were calculated and the absolute values are
used as the samples for the test. In none of the
17 industries in Table 4, the null hypothesis that
the two EDFs are from the same sample distri-
bution can be rejected at a significance level of
0.05. As for the one-sided Kolmogorov-Smirnov
test, while 10 human-chosen models have higher
absolute mean forecast errors among the 17 in-
dustries, only in one case (Industry 90–96) the
difference is significant at p-value 0.038 (the
human-chosen model has smaller forecasting er-
ror). The Kolmogorov-Smirnov test confirms the
complexity of the model selection problem and
the fact that the ML-inspired approach yields a
satisfactory result.

II) Interestingly, it seems that the approach com-
plies with the conservative principle and the con-
vention (Eq. (1)) better than human statisticians.
The result from this approach suggests keeping
the currently used models for 78 series, while
in the manual review, currently used models are
kept for 68 series. It implies that the algorithm
seems to act more consistently than human be-
ings.

III) We emphasize once again that it is difficult to
handle outliers in such reviews. Except for one
series (NACE 30), the numbers of outliers are
less than 5% of the number of observations and
might be regarded as reasonable for cases in Ta-
ble 4. In 6 series in Table 4, the manually chosen
models yield fewer outliers, while 5 series yield
more. Still, the slight changes in the number of
outliers have led to the model selection problem.
In this study, all the outliers are significant for
the default critical values in the X-12-ARIMA
program [10]. Other aspects of the plausibility
of the outliers are nevertheless not evaluated. It
would be interesting to incorporate outlier treat-
ment into this ML-inspired approach. We leave
it for future work.

3.4.2. Drawbacks of the approach
One problem discovered with this approach is that

there are no unique solutions, i.e., there are several sets
of weights that yielded the same highest score. The
problem is probably not so surprising with considera-

tion of the relatively small sample size (87 industries
and about 530 models). Besides, our accuracy met-
ric Acc(wi) is actually discrete with the finite sample,
which causes non-unique solutions. We expect that it
will not be an issue if we for example could increase
the sample size to more than 1000 time series and more
than 6000 models.

Another problem with the result is that some diag-
nostics, such as the test of the existence of seasonality
in the original series (“Season”) or the test of the exis-
tence of residual seasonality (“RSF”), are insensitive.
This may seem surprising at first glance since the test
of residual seasonality is a highly prioritized measure
(see Eq. (1)). Recall nevertheless that we are comparing
different models given the data. All competing models
may have similar performance regarding some diag-
nostics depending on the properties of the input time
series. For example, a re-investigation shows that there
are only 2 models of the total of about 530 models that
have failed the test of the existence of residual seasonal-
ity. For the example (industry NACE 20+21) shown in
Table 2, many diagnostics such as Season, Q1, Q2, and
RSF do have the same rank among all the 6 compet-
ing models. The insensitivity of some diagnostics com-
pounds the aforementioned problem with non-unique
solutions.

It is noteworthy that non-unique solutions will not
necessarily lead to problems. As we have noticed, with
the other sets of weights (not reported) that achieved
the highest score of Acc(wi), the mismatched series are
almost the same as those in Table 4 in our case.

4. Conclusions and final remarks

In this paper, we took up the problem of model se-
lection in annual reviews, which is an important step
to guarantee the quality of seasonal adjustment with
a partial concurrent revision policy recommended by
Eurostat [1]. We introduced a customary procedure for
this task. It was illustrated that without statistical crite-
ria for a trade-off among different statistical diagnos-
tics, not least between the BIC measure and revision
errors, the model selection could be difficult, personally
dependent, and time-demanding. This issue is common
for general model selection problems when there is no
single dominant criterion but instead conflicting diag-
nostics. It would be interesting to see more work in this
area, which is absent to our best knowledge.

In order to mitigate the problems, we attempted to
standardize and automatize the customary working pro-
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cedure. For this purpose, we proposed to use the human-
chosen models as the “true” ones and to search for the
“optimal” weights such that the best-ranked models, af-
ter weighting the diagnostics with those weights, would
be as close to the manually chosen models as possi-
ble. This proposal overcame the issue that there were
no true models for the evaluation and was inspired by
supervised ML algorithms.

Our study showed that this ML-inspired approach
worked pretty well. For the cases in which the approach
chose different models than human statisticians, the
approach-chosen models were equally well with respect
to the diagnostics and the Kolmogorov-Smirnov test of
forecasting errors. Interestingly, the approach seemed
to comply with the practical, implicit praxis (Eq. (1))
more consistently than human statisticians. Following
the result, we do not see an obstacle to using the weights
chosen by this ML-inspired approach and automatizing
the procedure for model selection.

As one would expect, this ML-inspired approach has
its limitations. In general, ML algorithms cannot give
satisfactory results for small data sets with no clear
pattern, not least for time series data. Similar to many
other ML algorithms, our results obtained for this par-
ticular data set cannot be readily generalized; for other
input data, the training process must be redone and the
resulting weights will be generally different.

For this particular study, there is plenty of room for
improvement. A drawback of our result is that the so-
lution is non-unique. Some measures can be taken to
mitigate the problem with non-unique solutions. So far
only a limited number of candidate models, 6 to 7 mod-
els for every series are evaluated, and including more
ARIMA models in such studies should be straightfor-
ward if it will not cause a capacity problem. Similarly,
the sample size could be increased if possible. Other-
wise, one could employ some resampling methods to
increase the sample size. More statistical diagnostics
can be taken in, and some insensitive diagnostics could
be excluded from the evaluation beforehand, after an
inspection. In addition, the design of weights and the
loop in this study are at the elementary level and can be
refined as well.

Despite the limitations and the drawbacks, our study
is, to our best knowledge, the first one in the litera-
ture to propose using the manually chosen models as
the “true” ones, in order to be able to apply ML-like
approaches. Furthermore, we have shown an example
of how machine-learning approaches could improve
statistical learning and facilitate official statistical pro-
ductions. We hope our study will inspire more coming
work in this direction.
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