
Statistical Journal of the IAOS 39 (2023) 501–511 501
DOI 10.3233/SJI-220093
IOS Press

Developing and hosting web data apps in R
programming for official statistics

Stratos Moschidis∗, Athanasios C. Thanopoulos and Christina Karamichalakou
Hellenic Statistical Authority, Piraeus, Greece

Abstract. Official statistics place particular emphasis on communication and dissemination of surveys’ results to citizens and
stakeholders. This is typically done through the publication of press releases and presentation of aggregated data of statistical
surveys. The use of web services and software that allow users to interact with the results of official statistics comes to further
enhance communication, dissemination, literacy and overall quality of official statistics. This paper is related to the objectives
and context of reaching a wider audience through engaging users and explains how an NSO (National Statistical Office) member
without specialized knowledge of frontend-backend programming techniques can create such web services in R programming
environment through “Shiny” library. The paper also reviews the issue of hosting “Shiny” apps and presents existing approaches.
For demonstration purposes, an experimental version of such an application was constructed that presents in an interactive way the
quarterly results of the new statistical product of the Hellenic Statistical Authority (ELSTAT) on Greek business demography.

Keywords: Official statistics, shiny package, r programming, dissemination of official statistics, web programming, data science,
dev ops

1. Introduction

One of the primary goals of the European Statistical
System is to disseminate [1] and communicate official
statistics [2]. Official statistics as a public good are bet-
ter understood and more useful for stakeholders through
their effective dissemination and communication [3].
Overall quality of official statistics is also being affected
by successful implementation of COP (code of practice)
principles [4] while new quality challenges for official
statistics have already emerged due to globalization
and technology advancements [5]. The improvement
in the quality of official statistics has, in turn, been de-
signed to boost public’s trust, which is associated with
a greater willingness to participate-cooperate, with the
corresponding positive effects on the production of high
quality official statistics [4].

It is a common practice for surveys’ results to be
disseminated through communication channels such

∗Corresponding author: Stratos Moschidis, Hellenic Statistical
Authority, Piraeus, Greece. Tel.: +30 6975122218; E-mail: smos@
statistics.gr.

as official institution websites, social media (e.g. twit-
ter, linkedin) [6], and electronic and printed media af-
ter they have been processed. In the case of the Hel-
lenic Statistical Authority (ELSTAT), the results of a
survey are usually issued through a relevant press re-
lease that includes electronic files with references to
the main points of the produced results but also from
attached electronic spreadsheets with the corresponding
aggregated data. Results are also being channelized in
social media and press so that results are shared with
public.

Although this presentation of the results is sufficient
to inform stakeholders, in the context of this paper, we
propose the use of web apps that enhance the user’s in-
teraction [7] with the results, which improves the under-
standing [8] of research by positively contributing to the
relevance and reproduction [9] of the services provided
by the official statistics carrier. Such apps have also
been used as instruments for teaching statistics [10,11],
tools for promoting statistical knowledge [12] and rais-
ing awareness for the official statistics in a wider au-
dience. In their multipurpose usage should also be no-
ticed the promotion of statistical literacy [13,14] whilst

1874-7655/$35.00 c© 2023 – IOS Press. All rights reserved.



502 S. Moschidis et al. / Developing and hosting web data apps in R programming for official statistics

it should be added up that they have been evaluated
as to their contribution [15]. Such apps should also be
considered as part of the greater data science context
that is an interdisciplinary field gaining more and more
attention on official statistic’s community [16–18]. It
should be also mentioned that COVID-19 worked as
an accelerator of developing data web apps with of-
ficial statistics sources promoting public briefing and
awareness about pandemic [19].

The paper is organized as follows. In Section 2 the
literature review is being presented while in Section 3.1
the how-to build methodology of web apps is being ex-
plained with R’s “Shiny” package. Next, in Section 3.2
the problem of hosting web apps built on Shiny package
is being analyzed and existing approaches are being
illustrated. In Section 4 follows a demo implementation
of such an app that can be utilized to promote com-
munication and dissemination of official statistics to
stakeholders and in Section 5 conclusions which sum-
marize the content provided by the present paper are
being discussed.

2. Literature review

According to the DSMOS model (Data Science
Model for Official Statistics) [20] dissemination of offi-
cial statistics stands as a primary factor with data visual-
ization and model deployment being as factor’s indica-
tor. Data science is also interconnected with the creation
of data-driven web apps [21] which in turn has also
been used for improving data literacy [14]. However, as
appealing as it is to use such an application, the issue
of its implementation is equally complex. Typically,
knowledge of front-end technologies such as HTML,
React, Angular, Vue, and CSS is required for the de-
velopment of a web application’s graphical interface,
formatting, and interaction with the user [22]. Back-end
technologies must also be comprehended, which typi-
cally include a web server, the application, a scripting
language (e.g., PHP, Python, Ruby on Rails, etc.), and a
database [23]. As a consequence, there is a wide range
of skills that one should have as knowledge for the de-
velopment of a complete web application [24], plus a
possible steep learning curve, they should be considered
as significant challenges for a non-programmer.

In recent years, however, a different approach has
been taken to the development of web applications and
even to those that emphasize data management, anal-
ysis and modeling. This cognitive gap was filled by
tools such as the Shiny library [25,26] for users of the

R language or Dash [27], Streamlit [28] and Voila [29]
for Python users. The central philosophy is that it is
sufficient to know R or Python and use any of the above
packages and their corresponding functions to build
an online dashboard [30], fast prototypes’ apps [31] or
even integrated applications such as real-time applica-
tions for the development of predictions from machine
learning models. These libraries were created to allevi-
ate the burden from painstaking work from using of a
variety of tools [32] and to allow the user to focus on
the application one wants to implement rather than how
to implement it technically. It is no coincidence that
there are several publications with applications built on
Shiny that aim to teach statistics [10,13,15,16,25,33] or
some complex object [33] or to present in an interactive
and visual way specialized discoveries [34].

This work focuses on the Shiny Library which refers
to the R-language whose community comes largely
from the subject of statistics. The idea of using Shiny
apps for dissemination and communication of official
statistics has been recently introduced in [14] which
aiming to provide better understating of data to the
users. However in [14] is not analyzed how a user
can develop and deploy a Shiny application. Hosting-
deploying a Shiny application is an issue by itself with
a variety of different approaches based on different cri-
teria [20,21]. These different approaches are illustrated
in Section 3.2.

3. Methodology

3.1. Developing a Shiny app

The web apps mentioned in the introduction are, in
fact, online dynamic dashboards [22] but not only, with
visually driven options that allow the user to interact
with the survey findings [23]. The visually driven op-
tions can be determined differently for each survey,
and their contents are based on the survey managers’
expertise of the subject within a bespoke – tailored
design model. The R programming language, namely
the Shiny package/library, was used to create a trial of
such an applet [24]. The Shiny package allows users
to create input objects, calculations, and output objects
through a variety of functions [25,26]. Each application
in Shiny operates according to the rationale outlined
below: When a user interacts with an input object (e.g.,
a drop-down list of options) then an input event is trig-
gered. Shiny’s “ear” then recognizes the type and char-
acteristics of the input event in order to automatically



S. Moschidis et al. / Developing and hosting web data apps in R programming for official statistics 503

produce a reaction to the specific event. Finally, this
reaction can result in the creation of an output object
(e.g. a diagram, a scoreboard, etc.). The Shiny library is
an excellent tool for developing web applications (via
rapid prototyping) [31] to meet the needs of data ser-
vices. This library enables R language users without
programming knowledge to develop frontend and back-
end applications using all of the R language’s features.
At the same time, Shiny ensures that all the necessary
functions in the backend and frontend [26] are executed
in the background in order for the web application to
be executed.

Shiny’s workflow
There are two basic functions in a Shiny application.

The first function is known as “ui”, and the second is
known as “server” [26]. The frontend of the web ap-
plication can be built in the first function using appro-
priate commands-functions. This includes both input
objects that will be processed in the backend and output
objects that will be the visible result of the processing
from a backend script. Within the ui function, library
functions that control the architectural design and aes-
thetics of the application’s frontend can also be placed.
Each input object is created using a suitable function
of the Shiny library and is given a set of parameters,
of which include, an id, a caption for the object, and
an initial value, constitute the object’s original state.
All parameters in an input object are stored as an item
in a list that includes all of the input objects’ elements
and has the predefined name “input”. Access to the data
of any input object can be obtained in the backend by
accessing the input list with the first argument of the
object’s creation function, i.e. the id.

The backend is made up of a plethora of functions
that use in their calculations both the values of input
objects and other data that is statically stored in the
R’s interface. Shiny has special backend functions that
monitor changes in the values of input objects. As a re-
sult, by changing an input event, these special functions
can instantly produce a reaction (e.g., creating a scatter
plot from the values of the input objects). Typically,
this reaction is an output object. Each output object has
some values that are stored as an item in a R list called
“output” and contains all the information about the out-
put objects generated in the backend at any given time.
When running a Shiny application, the only thing that
remains in the workflow is to print the output objects
in the frontend. This is accomplished in the ui function
by calling the corresponding function of output’s object
printing, which takes only the name of the object in the

list of output objects as an argument. It’s worth noting at
this point that in “Shiny” there are two ways of “listen-
ing” in what’s going on regarding events taking place
in an app. The first way is known as the “observer”
method, while the second is known as the “reactive”
method. The first method re-executes the code that ex-
ists within it instantly when the value of an input object
in the body of its code changes. Although this appears to
be normal, it can result in the development of inefficient
applications. Let’s consider the following example. Let
suppose that an output object is a forecast price that
indicates whether or not a creditor is solvent. Assume
that this result is predicted by training a classification
model with 22 input objects, each of which is the com-
pletion of a questionnaire field at the frontend of the
application. In this case, the listener’s change to a single
input object will automatically trigger the recalculation
of the entire model in a very short time. Consider that
it is reasonable to want for the application to respond
after answering all of the questionnaire’s questions. In
the preceding example, the implementation will cause
the execution of the predictive model 22 times. That
is why there is a second kind of listener. The literature
describes this as “lazy,” whereas it only calculates the
body of its code when a specific event changes (e.g. the
pressing of a submit-execution button). As a result, the
predictive model will be calculated only once, using all
22 entry values from the questionnaire all at once.

Example of a Shiny application
A Shiny application can be included in a single script,

or it can be divided into two scripts, the first repre-
senting the frontend and the second the backend. In
the case of a complex application with many lines of
code, the approach with the two scripts is more effi-
cient. Also, for the loading of libraries or external data
sources (e.g., databases, spreadsheets, etc.), it is rec-
ommended to create separate scripts and integrate them
into the body of the final application before the start
of the ui and server functions. When a Shiny app is
launched, the commands within the scripts are executed
only once, and the code is then executed only through
the two functions listed in the Shiny app. A simple ex-
ample of a Shiny application is provided below. When
we go to build an application in Shiny, we are given this
predefined example in the IDE Rstudio. This example
includes a slider box as an input object and a frequency
histogram as an output object.

Code is available in code.R script in: https://drive.goo
gle.com/drive/folders/199UekXOk83rehvlcIQ8ZR_BQ
vKzD5P_d?usp=sharing



504 S. Moschidis et al. / Developing and hosting web data apps in R programming for official statistics

Description of how the above code works
The input and output objects, as well as some func-

tions that provide spatial and aesthetic management of
the frontend canvas, are included in the ui function. In
essence, they are Shiny commands that are translated
into corresponding HTML, CSS, and JavaScript code.
However, in addition to the fixed options provided by
the existing functions of a library version, the author
of the application can place his own code in HTML,
CSS, and JavaScript and have complete control over the
application’s frontend.

The application divides the frontend into a grid in
its basic version, with column creation options, sidebar
options, a central panel, a tab set panel, and so on.
Aside from the Shiny’s grid, there are R libraries such
as Shiny dashboard [27] that allow you to fine-tune the
architectural design of the application without writing
any additional code. There are also libraries, such as
Shiny Widgets [28], that help to expand the available
input objects provided by Shiny. In the above example
the code

sliderInput(“bins”,
“Number of bins:”,
min = 1,
max = 50,
value = 30)

creates the app’s input object. The ID of the object is
“bins,”, the caption is “Number of bins:” and the object
in question is required to declare the slider’s minimum,
maximum, and current value.

The code:

output$distPlot < − renderPlot({
# generate bins based on input$bins from ui.R
x < − faithful[, 2]
bins < − seq(min(x), max(x), length.out =

input$bins + 1)
# draw the histogram with the specified number

of bins
hist(x, breaks = bins, col = ‘darkgray’, border =

‘white’)
})

acts as an instantaneous listener, generating a randomly
generated frequency histogram with each change of the
input$bins, with the number of bins in the histogram
determined by the respective value of the input$bins.
The last line is returned as a diagram, which is saved as
“distPlot” in the list of output objects. The plotOutput
(“distPlot”) code is used to print the output object in
the frontend ground using the plotOutput() function.

If building the UI of a Shiny app is still a burden, at
the time this paper was written, there are some pack-
ages alleviating this difficulty. “Designer” [29] is an R
package which enables users to create UI components
in a Shiny app via drag n drop while generates also the
equivalent code for your scripts. “Shiny UI editor” [30]
is one new package from Rstudio’s (Posit) team that
operates in a similar way with Designer. There is also
a package called “ShinyWYSIWYG” [31] which ven-
tures one step further to include also the server logic
through it’s GUI while also producing the correspond-
ing R code. These packages are extremely handy cre-
ating an abstraction level for app creators and aim to
enhance focus on R code that hasn’t to do with coding
a functional design. Last but not least there are addition
R packages that aim to help user succeed in creating
complex UI [27,28,32,33].

3.2. Hosting a Shiny app

Although building an application in Shiny is a quite
simple, creative and fast task (depending on complexity
of the app), hosting an application as an online ser-
vice presents technical challenges [20,34]. Shiny cre-
ates a web server for you, but that’s where the problems
begin. The issue stems from the fact that the R lan-
guage, on which the specific library is based, is a single
threaded process. Even though there have been publica-
tions [8,10,14] about creating Shiny R apps and using
for the needs of official statistics there is little to no
information about different types of hosting-deploying
an app. Hosting and maintaining a Shiny app in an pro-
duction level is a quite technical procedure as it will be
shown below while deploying procedure should consid-
ered as a critical factor concerning their use from NSOs.
Fortunately, there are a variety of approaches address-
ing this problem. Before selecting a solution for hosting
“Shiny” apps questions should be asked such as how
many concurrent users there should be able to interact
with the app, whether the app should be hosted in-house
or outsourced( cloud infrastructure vendors). Consid-
eration should also be taken on topics such as the total
expenses, authentication an authorization capabilities
and overall security.

Localhost R Studio Desktop
Running Shiny app can be done from a personal com-

puter (i.e a laptop) directly from R Studio Desktop.
This is the fastest way to host a Shiny app but it comes
with an important flaw. Interaction with the app is lim-
ited to one concurrent user due to R’s single threaded



S. Moschidis et al. / Developing and hosting web data apps in R programming for official statistics 505

nature. It’s an in-house hosting solution, providing no
authentication or authorization, no additional expenses
and no security in terms of https/ssl. This way of host-
ing a Shiny app can be utilized for projects’ drafts and
mockups presentation.

Shinyapps.io
This is an online service that provides Shiny app

hosting and it can be a free or a paid service. Adding
an app to this service is particularly simple and can be
done directly from the RStudio IDE. It is a free ser-
vice in the beginning (with limited options and com-
puting resources) [34], but there is a fee if someone
wants to use all of the service’s features. The service’s
advantages include ease of installation and compliance
with security parameters such as encryption and au-
thentication (in the licensed version of the service). It
is also possible to scale and support the service’s use.
Shinyapps.io is an outsourced way of hosting, enables
existence of concurrent users and depending on hosting
plan it can provide authentication, authorization and
security.

Shiny server opensource
If someone intends to self-host Shiny apps, there is

a free and opensource version of the Shiny server that
can be used in an operating system. While this version
enables the existence of concurrent users(but with lim-
itations), there are disadvantages for production-level
applications such absence of built in authentication-
authorization options.

Shiny server pro and Rstudio Connect
To address the issues raised above, solutions such as

RStudio’s Shiny server pro, a commercial version of
Shiny server that provides for more complete control of
Shiny application hosting, have been developed (which
solves the problems mentioned above).

There is also the “Rstudio Connect” service. Rstu-
dio connect supports enterprise-level hosting of Shiny
applications [35], user authentication via options such
as LDAP, Google OAuth 2.0, and others, database con-
nections, user management in roles and access rights,
and the ability to scale resources for the best possible
application operation. This service is available online
under a fee by the time this paper was written. So Rstu-
dio connect is an outsourced way of hosting Shiny apps
which satisfies scalability, authorization, authentication,
security but it comes as a paid service.

Docker and Shiny Proxy
In recent years, it has become clear that the container-

ization technique is gaining traction in applications that
are intended to be used in production rather than in a test
environment. Docker is a popular piece of software [20]
that harnesses some powerful kernel-level technology.
It generates lightweight virtual machines through its
images (i.e. preinstalled applications in an operating
system) that run within an existing operating system.
Unlike the traditional creation of a virtual machine, the
creation of a container from a “Docker image” [20] in
Docker does not necessitate the allocation-commitment
of our system’s computing resources in advance. Fur-
thermore, different containers can communicate with
one another, thus providing complete freedom during
the development of a service, such as the simultaneous
existence of containers for production, testing, research-
development, or the use of different software versions
(e.g. different containers with different versions of the
R language). We can also run many docker containers
at the same time using our original operating system,
which solves the problem of R’s single-threaded-nature,
i.e. the use of the service by a single simultaneous user.
Moreover Docker appears with a DevOps’ philosophy
suitable for usage in reproducible research.

In order to address the shortcomings of Shiny server
opensource and allow concurrent usage [20] of Shiny
apps and enable authorization features, the Shinyproxy
software, which is based in java enterprise, was devel-
oped in 2016. It employs mature authentication and
certification techniques and can launch multiple Docker
containers at the same time, including the installation
of the R language and a R Shiny application. It also
works with reverse proxies (e.g., Ngnix, Apache) [20]
to redirect users to their respective containers as needed.
Shiny Proxy also supports load balancing [43] via com-
munication with the Docker API, as well as collabo-
ration with Docker Swarm in cases where scaling [43]
number of concurrent users is critical. Furthermore, the
data encryption issue also is addressed [20] and SSL
certificate application is supported. With this approach,
we can have enterprise-level functionality while still
using opensource technologies. At the time this paper
was written one can find several solutions of hosting
Shiny apps with docker and Shinyproxy.

Hosting in cloud environments
Of course, there is also the ability to host a Shiny

app into a PaaS (platform as a service) cloud computing
environment. Companies like Amazon, Digital ocean
etc. provide all necessary components to share your
Shiny apps with stakeholders. In addition, the popular-
ity of Shiny apps has led them develop products such



506 S. Moschidis et al. / Developing and hosting web data apps in R programming for official statistics

Fig. 1. Selecting categories in the tab “select and compare data”.

as “one-click-installation” droplets that has to do with
Shiny hosting. Deployment in Heroku is also popular
which is a PaaS suitable for running containerized apps.

4. Application

Demo of a Shiny application in Docker and Shinyproxy
This section presents a trial application that we cre-

ated to illustrate the whole workflow (development and
hosting) in which this research is focused on. In the
hosting part of the workflow, Shinyproxy and Docker
approach was used as the most proper one for Research
and Development uses whilst not being compromised
anything in terms of software engineering principals.
Code of demo app is available in https://drive.google.
com/drive/folders/199UekXOk83rehvlcIQ8ZR_BQvK
zD5P_d?usp=sharing (corresponding files are appfi-
nal.R and data.xlsx). At any case in order to success-
fully run the app please ensure that you’ve downloaded
these two files in the same folder of your system.

In order to implement this workflow, first of all we
build the shiny app following guidelines mentioned in
Section 3.1 of the present manuscript. Next we used a
linux ubuntu server 22.04 version in order to deploy the
other components that are required in order to impleme-
nent the proposed workflow. Then, docker software and
shinyproxy software were also installed in the system.
Then, we used the image of openanalytics/r-ver:4.1.3
in order to build the docker image and then running
the corresponding docker container while also we used
an (.yml) file to provide guidelines to shinyproxy in
explain to it how to proceed as a proxy middleware
and split each user to a different docker container that
contains our app. Next, we installed upon them a Nginx
http web server to operate as a proxy to our inner infras-

tructure. In order to provide more security to our work-
flow at the top of it we also installed an SSL certificate
from Let’s Encrypt service [36].

The application concerns business demography data
based on the Statistical Business Register and allows
the user to track enterprises’ population changes by
sector of activity and time period (per quarter). The app
has the predefined layout of a Shiny app with panels
and tabsets. There is also a link “for mobile version”
because shinyproxy, even though shiny app is build on
bootstrap framework that is already in responsive mode,
puts apps in frames that eliminates at first place the
existence of bootstrap CSS framework. The application
contains pre-installed data that the user can process.
After the initial connection to the system the user can
choose between 3 different options. The first is located
in the “select and compare” tab and enables the user
to select one or more quarters to dynamically create a
table to compare the results. The panel can be filtered
so that the user can focus on the information desired
for him. These are shown in Figs 1 and 2. The second
option of the application is for the user to select the
“visualize” tab. In this tab, the user can select a specific
quarter from the available quarters of the example and
receive an interactive graph in which by moving the
pointer of his cursor he can see additional information
about each point, such as the coordinates of the point
in the scatter chart that is dynamically generated on the
screen. The same diagram allows the user to use his
cursor to select subareas of the chart and enlarge the
information corresponding to them. Also through the
options of the chart he can take a snapshot and save
it to his computer as an image file. This diagram as
well as the rest of the application’s visualizations are
implemented with the plotly library [20]. The above
are presented in Figs 3–5. Finally, the user can select



S. Moschidis et al. / Developing and hosting web data apps in R programming for official statistics 507

Fig. 2. Filtering data of a column in the tab ”select and compare data”.

Fig. 3. Visualizing enterprises’ information by a specified quarter.

Fig. 4. Magnified sub area with its points.



508 S. Moschidis et al. / Developing and hosting web data apps in R programming for official statistics

Fig. 5. Taking snapshot of the diagram.

Fig. 6. Selecting quarters and starting animation.

Fig. 7. Selecting specified number of categories.



S. Moschidis et al. / Developing and hosting web data apps in R programming for official statistics 509

Fig. 8. Selecting specified categories.

the “animate and compare” tab in which the user can
select quarters from the corresponding dropdown menus
to compare them in an animated way. To launch the
animation, it is enough for the user to press the relevant
“play” icon located on the “play animation” slider. In
this way, it will launch the animation which in each
frame adds the number of businesses of a new category
of businesses. The animation can be discontinued at any
time and act as a selector to display a certain number
of categories and view the corresponding data for their
businesses. In addition, the user by clicking with his
mouse pointer on one or more categories can isolate the
subset of the categories for which he wishes to receive
the corresponding data for their businesses. These can
be seen in Figs 6–8.

So with the three different options, the application
presents our data at the same time as either a dy-
namic interactive whiteboard, or as a dynamic interac-
tive graph, or as a dynamic interactive animation.

For the creation of the app we used a number of R
libraries [24,28,37–40].

You can also find a working version of the above
app using the Docker and Shinyproxy approach at:
https://experimental.statistics.gr.

5. Conclusions

Web apps in R programming through the “Shiny”
package has gained over the recent years strong popu-
larity while also attention on how production level apps
could be generated from it has been paid.

The use of web applications that allow a user to have
tailor-made access on statistics with an interactive dash-

board containing the results of a statistical survey can be
a disseminating complement and increase public aware-
ness of National Statistical Institutes’ (NSIs) surveys.
Consequently, improving communication and dissemi-
nation of statistical data can improve the relevance of
services provided to citizens/stakeholders. In this paper,
we reviewed specific aspects of the literature concern-
ing “Shiny” apps and demonstrated how to create and
host applications with the R programming language.
We presented how a non-expert in web application pro-
gramming can create an original application that dis-
plays the results of a survey by defining the basic fea-
tures and functions of this library. We then researched
and compared various methods for hosting such an ap-
plication depending on the factors expenses, security,
hosting type, authentication and authorization. All the
above used the most updated sources at the time this
paper was written. We also implemented an opensource
pipeline based on Linux Ubuntu server, Docker soft-
ware and Shinyproxy software to host our containerized
application according to what we have mentioned on
“hosting a shiny app” section. Shiny however has its
own limitations in software engineering since R is not a
fast language by nature but on other hand users can be
extremely benefited from the R’s versatile environment
with loads of sophisticated statistical analysis methods.
In our next research steps, we will investigate how this
pipeline can be enriched with the addition of an API
functionality so that users can ask for data from a set
of different data formats (e.g spreadsheets, JSON etc.).
Finally, we will keep evolving our apps in a packaged
environment though packages such as golem [41] and
rhino [42].



510 S. Moschidis et al. / Developing and hosting web data apps in R programming for official statistics

References

[1] Wang L, Whitman Z, Olmsted-Hawala E, Chestnut R. Integrat-
ing Usability Testing into the Designand Development of Data
Dissemination Platform for US Official Statistics. In: Extended
Abstracts of the 2021 CHI Conference on Human Factors in
Computing Systems. 2021. pp. 1–6.

[2] Hudec M, Bednárová E, Holzinger A. Augmenting statisti-
cal data dissemination by short quantified sentences of nat-
ural language. Journal of Official Statistics [Internet]. 2018
Dec 1 [cited 2022 Apr 11]; 34(4): 981–1010. Available from:
https://sciendo.com/article/10.2478/jos-2018-0048.

[3] Dissemination and communication | UNECE [Internet]. [cited
2022 Apr 11]. Available from: https://unece.org/statistics/diss
emination-and-communication.

[4] Radermacher WJ. Official statistics in the era of big data op-
portunities and threats. International Journal of Data Science
and Analytics. 2018; 6(3): 225–31.

[5] Sæbø HV, Holmberg A. Beyond code of practice: New quality
challenges in official statistics. Statistical Journal of the IAOS
[Internet]. 2019 Jan 1 [cited 2022 Jul 28]; 35(2): 171–8. Avail-
able from: https://content.iospress.com/articles/statistical-jour
nal-of-the-iaos/sji180463.

[6] Glavan IR, Mirica A, Firtescu BN. The use of social media
for communication in official statistics at european level. Ro-
manian Statistical Review [Internet]. 2016 [cited 2022 Apr
11]; 64(4): 37–48. Available from: https://ideas.repec.org/
a/rsr/journl/v64y2016i4p37-48.html.

[7] De Broe S, ten Bosch O, Daas P, Buiten G, Laevens B, Kroese
B. The need for timely official statistics. The COVID-19 pan-
demic as a driver for innovation. Statistical Journal of the
IAOS. 2021; (Preprint): 1–7.

[8] Tebé C, Valls J, Satorra P, Tobías A. COVID19-world: A
shiny application to perform comprehensive country-specific
data visualization for SARS-CoV-2 epidemic. BMC Med Res
Methodol [Internet]. 2020 Sep 21 [cited 2022 Aug 7]; 20(1):
235. Available from: doi: 10.1186/s12874-020-01121-9.

[9] Elvers E, Lindén H. Quality concept for official statistics.
Wiley StatsRef: Statistics Reference Online. 2014; 1–13.

[10] Potter G, Wong J, Alcaraz I, Chi P, others. Web application
teaching tools for statistics using R and shiny. Technology
Innovations in Statistics Education. 2016; 9(1).

[11] Wang SL, Zhang AY, Messer S, Wiesner A, Pearl DK. Student-
developed shiny applications for teaching statistics. Journal
of Statistics and Data Science Education [Internet]. 2021 Sep
2 [cited 2022 Jul 27]; 29(3): 218–27. Available from: doi:
10.1080/26939169.2021.1995545.

[12] González JA, López M, Cobo E, Cortés J. Assessing Shiny
apps through student feedback: Recommendations from a qual-
itative study. Computer Applications in Engineering Education
[Internet]. 2018 [cited 2022 Jul 27]; 26(5): 1813–24. Available
from: doi: 10.1002/cae.21932.

[13] Forbes S, Harraway J. From face-to-face teaching of official
statistics to e-learning for the Sustainable Development
Goals. Statistical Journal of the IAOS [Internet]. 2021 Jan 1
[cited 2022 Jul 27]; 37(3): 853–72. Available from: https://
content.iospress.com/articles/statistical-journal-of-the-iaos/
sji210811.

[14] Siregar E, Prawisudatama A. LiteRate: A Shiny R app for
improving data literacy in Indonesia. Statistical Journal of the
IAOS [Internet]. 2020 Jan 1 [cited 2022 Aug 5]; 36(4): 905–13.
Available from: https://content.iospress.com/articles/statistic
al-journal-of-the-iaos/sji200755.

[15] Fawcett L. Using interactive shiny applications to facilitate

research-informed learning and teaching. Journal of Statistics
Education [Internet]. 2018 Jan 2 [cited 2022 Jul 27]; 26(1):
2–16. Available from: doi: 10.1080/10691898.2018.1436999.

[16] Porciani L, Rondinella T. Teaching official statistics in univer-
sities. Recommendations from a direct experience. Statistical
Journal of the IAOS [Internet]. 2019 Jan 1 [cited 2022 Jul 27];
35(3): 425–33. Available from: https://content.iospress.com/
articles/statistical-journal-of-the-iaos/sji190494.

[17] Kitchin R. The opportunities, challenges and risks of big data
for official statistics. Statistical Journal of the IAOS [Inter-
net]. 2015 Jan 1 [cited 2022 Jul 27]; 31(3): 471–81. Available
from: https://content.iospress.com/articles/statistical-journal-
of-the-iaos/sji906.

[18] Radermacher WJ. Official statistics in the era of big data op-
portunities and threats. International Journal of Data Science
and Analytics. 2018; 6(3): 225–31.

[19] Guidotti E, Ardia D. COVID-19 data hub. Journal of Open
Source Software. 2020; 5(51): 2376.

[20] Li Y. Towards fast prototyping of cloud-based environmental
decision support systems for environmental scientists using
R Shiny and Docker. Environmental Modelling & Software.
2020; 132: 104797.

[21] How to Pick the Right Hosting Option for Your Shiny App
[Internet]. Hosting Data Apps. 2021 [cited 2022 Aug 6]. Avail-
able from: https://hosting.analythium.io/how-to-pick-the-right-
hosting-option-for-your-shiny-app/.

[22] Beeley C. Hands-On Dashboard Development with Shiny:
A practical guide to building effective web applications and
dashboards. Packt Publishing Ltd; 2018.

[23] Stankowski S, Nadeem A, Ravinet M. The speciation survey
app: an interactive dashboard for exploring the results of the
online survey. Authorea Preprints. 2022.

[24] Chang W, Cheng J, Allaire J, Xie Y, McPherson J. Package
‘shiny.’ See http://citeseerx ist psu edu/viewdoc/download.
2015.

[25] Wickham H. Mastering shiny. O’Reilly Media, Inc.; 2021.
[26] Sievert C. Interactive web-based data visualization with R,

plotly, and shiny [Internet]. [cited 2022 Aug 7]. Available from:
https://plotly-r.com/.

[27] Shiny Dashboard [Internet]. [cited 2022 Aug 6]. Available
from: https://rstudio.github.io/shinydashboard/.

[28] shinyWidgets [Internet]. [cited 2022 Aug 6]. Available from:
http://shinyapps.dreamrs.fr/shinyWidgets/.

[29] Baldry A. designer: “Shiny” UI Prototype Builder [Internet].
2022 [cited 2022 Aug 5]. Available from: https://CRAN.R-
project.org/package=designer.

[30] Build and Modify your Shiny UI, visually [Internet]. [cited
2022 Aug 5]. Available from: https://rstudio.github.io/shinyui
editor/.

[31] Rodriguez JC. ShinyWYSIWYG [Internet]. 2022 [cited 2022
Aug 5]. Available from: https://github.com/jcrodriguez1989/
shinyWYSIWYG.

[32] Attali [aut D, cre. shinyjs: Easily Improve the User Experi-
ence of Your Shiny Apps in Seconds [Internet]. 2021 [cited
2022 Aug 6]. Available from: https://CRAN.R-project.org/
package=shinyjs.

[33] Using shiny with flexdashboard [Internet]. [cited 2022 Aug
6]. Available from: https://rstudio.github.io/flexdashboard/artic
les/shiny.html.

[34] Santangelo AP, Solovey G. Running Online Behavioral Ex-
periments Using R: Implementation of a Response-Time De-
cision Making Task as an R-Shiny App. J Cogn [Internet].
[cited 2022 Aug 6]; 5(1): 9. Available from: https://www.
ncbi.nlm.nih.gov/pmc/articles/PMC8740653/.



S. Moschidis et al. / Developing and hosting web data apps in R programming for official statistics 511

[35] Aravamuthan S, Reyes JFM, Dopfer D. Real-time estimation
and forecasting of COVID-19 cases and hospitalizations in
wisconsin HERC regions for public health decision making
processes. International Journal of Infectious Diseases [Inter-
net]. 2022 Mar 1 [cited 2022 Jul 28]; 116: S28–9. Available
from: https://www.sciencedirect.com/science/article/pii/S120
1971221009607.

[36] Aas J, Barnes R, Case B, Durumeric Z, Eckersley P, Flores-
López A, et al. Let’s Encrypt: an automated certificate au-
thority to encrypt the entire web. In: Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications
Security. 2019. pp. 2473–87.

[37] Chang W, Park T, Dziedzic L, Willis N, McInerney M.
shinythemes: Themes for Shiny. R package version. 2018;
1(2).

[38] Xie Y, Cheng J, Tan X. DT: a wrapper of the JavaScript library
‘DataTables.’ R package version 04. 2018.

[39] Huntington-Klein N. vtable: Variable Table for Variable Docu-
mentation [Internet]. 2022 [cited 2022 Aug 7]. Available from:
https://CRAN.R-project.org/package=vtable.

[40] Tang Y. Autoplotly: An R package for automatic generation
of interactive visualizations for statistical results. Journal of
Open Source Software. 2018; 3(24): 657.

[41] Fay C, Rochette S, Guyader V, Girard C. Engineering
Production-Grade Shiny Apps. Chapman and Hall/CRC; 2021.

[42] rhino: A Framework for Enterprise Shiny Applications [Inter-
net]. Available from: https://cran.r-project.org/web/packages/
rhino/index.html.

[43] Marathe N, Gandhi A, Shah JM. Docker swarm and kubernetes
in cloud computing environment. In: 2019 3rd International
Conference on Trends in Electronics and Informatics (ICOEI).
IEEE; 2019. pp. 179–184.


