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Abstract. In the face of the Triple Planetary Crisis concerning climate change, biodiversity loss, and pollution, the global
community is in dire need of quantitative, data-based approaches to inform its response and guide its path towards a sustainable
and equitable future. Government spending and fiscal policy are key levers in shaping this response. In order to assess the potential
for using machine learning to inform policymakers’ and governments’ decision-making and spending allocation decisions based
on environmental outcomes, the United Nations Environment Programme (UNEP) and the United Nations Conference on Trade
and Development (UNCTAD) collaborated to produce a joint pilot study. The study uses official development assistance data
(ODA) to train machine learning models to predict deforestation rates in six different countries: the Democratic Republic of the
Congo, Haiti, Liberia, Madagascar, Solomon Islands, and Zambia. Initial modelling results were promising and the approach could
prove to be a valuable asset to policymakers by enabling scenario analysis, where hypothetical budgets or spending allocations can
be run through models trained on historical data to give insight on potential impacts on environmental indicators. Future research
could be expanded to a pilot study with a national government using disaggregated budget data instead of ODA as model inputs.
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1. Introduction

In 2020, the United Nations Environment Programme
(UNEP) highlighted three critical planetary crises af-
fecting the international community: climate change,
biodiversity loss, and pollution [1]. An essential pillar
in addressing these topics is the role of governments, in
particular their fiscal policy and budgets. With targeted,
green fiscal policy, governments can either minimize
spending which intensifies the crises, or, better yet,
support measures which actively address and mitigate
them.

The aftermath of the COVID crisis was seen by many
as an opportunity to build back greener [2]. While the
long-term economic and environmental consequences
of the pandemic remain to be seen, there is growing
consensus that addressing social and economic con-
ditions cannot be considered separately from environ-
mental conditions [2]; policies for the former must in-
corporate considerations for the latter for the long-term
health and sustainability of the global economy. After

all, more than half of global GDP is highly or moder-
ately dependent on nature [3]. Public and fiscal policy
are some of the most immediate and impactful means of
addressing social, economic, and environmental issues,
yet national budgets are rarely determined or informed
using systematic, quantitative analysis or scenario anal-
ysis, where the potential impacts of different spending
decisions are examined using data and models.

Expanding the role of quantitative analysis in gov-
ernment decision-making will be key to accomplish-
ing the long-term goal of a green, inclusive recovery
and economy. Researching, promoting, and providing
access to monitoring tools and methods would greatly
increase the impact, accountability, and transparency
of public spending [4]. Data and advanced quantita-
tive methods could play a key role in helping guide
our future decision-making [1]. This may take the form
of either leveraging and extracting more insights from
existing data or of making use of the ever-increasing
quantities and varieties of new data being produced on
a daily basis. Machine learning methodologies such as
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those applied in this paper have immense potential to
impact and improve the public sector, but further re-
search to assess the possibilities and address potential
issues, such as the perpetuation of biases, needs to be
conducted.

In this spirit and in order to bring this vision closer
to reality, UNEP and the United Nations Conference on
Trade and Development (UNCTAD) undertook an inter-
agency collaboration to assess the feasibility of using
machine learning and data-based approaches to inform
spending decisions based on their potential impact on
environmental indicators. The hope is that exploratory
and proof of concept research such as this can serve
as inspiration and a starting point for governments in
utilizing new methodologies to inform their spending
and budgetary decisions and efficiently allocate their
scarce funds to maximize progress towards sustainable
and inclusive economies and development.

The analysis used official development assistance
(ODA) data to train machine learning models in pre-
dicting deforestation rates in six different countries:
the Democratic Republic of the Congo, Haiti, Liberia,
Madagascar, Solomon Islands, and Zambia. Initial re-
sults were promising and illustrate how machine learn-
ing could help inform spending decisions. The rest of
the paper will proceed as follows. Section 2 will pro-
vide background information on the ODA and environ-
mental situation in each of the six countries, as well
as information on machine learning and the methods
employed in the analysis; Section 3 will provide de-
tails of the analysis performed; Section 4 will discuss
the results of the analysis; Section 5 will conclude and
discuss potential ways forward.

2. Background

2.1. Green spending and deforestation

Deforestation plays a critical role in the aforemen-
tioned planetary crises, as forests foster biodiverse
ecosystems and combat climate change through carbon
sequestration. This role, coupled with good data cover-
age and availability from Global Forest Watch on defor-
estation across the globe, made it an ideal target vari-
able for the analysis, acting as a proxy for environment-
related outcome indicators.

The goal of the analysis was to predict deforestation
rates using data on spending and fiscal decisions. Lack-
ing access to national governments’ historical and dis-
aggregated budgets, we were limited to publicly avail-

able datasets. In this regard, ODA was an ideal proxy,
comprising a completely transparent and public compo-
nent of governments’ spending due to flows originating
in donor countries. Furthermore, ODA flows are broken
down by economic sector and environmental marker
targeted [5].

Of course, ODA or government spending is not
the only factor impacting deforestation rates. An all-
encompassing model perfectly capturing the diverse
components and their interplay affecting deforestation
would be impossible to construct. However, there are
characteristics which could make it more or less likely
for ODA in a given country to have a greater impact on
deforestation. In particular, large ODA inflows relative
to gross national income (GNI) in a country increases
the likelihood that a model based on ODA would be
able to capture important elements affecting deforesta-
tion, underpinned by the knowledge that lower income
or less economically developed economies are often
tempted to exploit their natural resources and assets to
act as a fiscal buffer [6].

These assumptions guided the selection of the six
countries examined in the analysis; each coupled high
deforestation rates with elevated levels of net ODA
to GNI ratios. Figures 1 and 2 show the cumulative
treecover losses, in percentage, since 2000 and net ODA
to GNI ratios for the six countries, respectively. Each
country had lost at least seven per cent of its 2000
treecover by 2020, ranging all the way up to 24 per cent
for Madagascar. Over the period from 2000 to 2019,
each country also averaged at least the low income
country average for net ODA as a percentage of GNI,
as in the case of Haiti, ranging up to more than four
times that average in the case of Liberia. The following
sections will briefly explore the specific environmental
and fiscal circumstances of each country.

Democratic Republic of the Congo
The Democratic Republic of the Congo (DRC) is

home to rich and diverse forest assets, hosting the ma-
jority of the Congo Rainforest. These teeming forests
help the country count as the most biodiverse country
in Africa, which illustrates the imperativeness of pro-
tecting its forest resources, as they play a crucial role in
broader regional ecosystems [7]. Unfortunately, since
2000 the DRC has lost eight percent of its treecover,
driven largely by agriculture, forestry, and industrial
logging [8,9]. Fuelwood gathering also plays an impor-
tant role in deforestation.

Economically, the DRC is highly dependent on ODA,
which averaged 13 per cent of GNI over the period from
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Fig. 1. Cumulative tree cover loss since 2000.

2000 to 2019. The country has one of the lowest Human
Development Indices (HDI) in the world [10] and is the
eighth largest recipient of ODA in the world and fourth
largest recipient in Africa [11]. Furthermore, 60 per cent
of employment comes from agriculture, with one third
of people affected by acute food insecurity [12,13],
increasing the likelihood that targeted ODA flows may
have a substantive impact on rates of deforestation.

Haiti
Haiti is a biodiversity hotspot within the broader

hotspot of the Caribbean, boasting high levels of en-
demic flora and fauna [14]. Unfortunately, the country
has suffered from drastic rates of deforestation dating

back to colonial times. Prior to the arrival of Europeans,
75 per cent of Haiti’s land was forested [15]. Since
that time, industrial logging and agricultural clearances
for sugar cane harvesting have taken a toll on Haiti’s
forests [16]. Haiti has lost eight per cent of its treecover
since 2000 alone [17]. Today, the border between Haiti
and the Dominican Republic, with whom it shares the
island of Hispaniola, is visible even from aerial and
satellite photography due to their differing histories and
paths regarding deforestation.

A primary driver of deforestation in Haiti is the de-
mand for fuelwood, which makes up almost 80 per cent
of Haiti’s primary energy supply [18,19]. This demand
is driven, in turn, by subpar electrical and power infras-
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Fig. 2. Net ODA received as a percentage of GNI.

tructure, driving people to turn to woodfuels as alterna-
tive energy sources [20]. The situation is exacerbated by
more than 60 per cent of rural land lacking legally rec-
ognized ownership documents, which disincentivizes
sustainable land and agricultural practices [21].

From an ODA perspective, Haiti’s receipts as a per-
centage of GNI are in line with the low income country
average, as evidenced in Fig. 2. The exception being
2010, when a magnitude 7 earthquake caused a large
humanitarian disaster and subsequent inflow of foreign
aid. ODA reached nearly 25 per cent of GNI in 2010.

Liberia
Liberia is home to most of West Africa’s remaining

primary tropical forests, constituting an important part

of the Guinean Forests of West Africa. In 2000, 96 per
cent of Liberia was covered in natural forest [17]. How-
ever, it had lost 22 per cent of that treecover by 2020, the
equivalent of 1.11 gigatonnes of carbon emissions [17].
Agriculture and mining are the primary drivers of defor-
estation in the country, with natural resource extraction
and exploitation making up a significant portion of its
economy [22].

The country is making efforts to address its alarm-
ing rate of environmental degredation, making a zero-
deforestation commitment in 2014 [23]. It has addi-
tionally signed a voluntary partnership agreement with
the European Union with the goal of improving lumber
traceabilitiy and forest management [24], but on the
ground changes remain difficult to spot [25].
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Liberia averaged the highest proportion of ODA to
GNI from 2000 to 2019 in the six-country sample. Two
civil wars dating from 1983 to 2003 wrought destruction
upon the country and spurred dramatic levels of foreign
assistance in the 2000s. Since 2010, the ODA to GDP
ratio has declined, but still remains well above the low
income country average.

Madagascar
Madagascar is home to a unique ecosystem, with

more than 80 per cent of its flora and fauna unique to
the island [26]. Unfortunately, it also suffers from ram-
pant deforestation, losing 25 per cent of its forest cover
between 2000 and 2020 [17]. At current rates, defor-
estation and climate change could see the disappearance
of the country’s eastern rainforest by 2070 [26].

As in other countries, agriculture has been the pri-
mary engine of deforestation in Madagascar. With a
rapidly increasing population to feed, forests are rapidly
being converted to farmland despite government ef-
forts [27]. Poor farmers have little choice other than
to turn to unsustainable agriculture practices, such as
slash-and-burn [27].

Since 2000, on average, Madagascar has experienced
higher ODA to GNI ratios than the low income country
average, mostly driven by extremely high inflows in the
2000s. Since 2010, though still substantial, the ratio has
fallen below the low income country average.

Solomon Islands
Like other countries in the analysis, the Solomon

Islands are a hotbed of biodiversity in terms of both flora
and fauna, counting over 3 200 indigenous plant species
and a wide array of birds, mammals, and fish [28].
The country’s population is largely rural, with a large
percentage relying on the country’s wildlife and natural
resources for food and income [28]. Similar to Liberia,
96 per cent of the country was covered in forests in
2000, though its rate of loss since then has been lower
than that of Liberia; in 2020, the Solomon Islands had
lost seven per cent of its forest cover.

Commercial agriculture, especially palm oil planta-
tions, coupled with logging and mining, are the primary
drivers of deforestation in the country [28]. Timber
in particular is an important industry for the country,
which counts as the second largest exporter of round
logs to China, posing an acute threat to the country’s
forests [29,30]. As an island nation, deforestation poses
an additional threat to soil and coastline erosion and
coral reefs [30].

The country’s government and the international com-

munity have made efforts to protect and properly stew-
ard the Solomon Island’s forests in recent years, for
instance implementing a National Forest Inventory and
joining the United Nations Programme on Reducing
Emissions from Deforestation and Forest Degrada-
tion [31,32].

The country is heavily reliant on ODA, which mea-
sured 24 per cent of GNI between 2000 and 2019, on
average, though this ratio has declined since 2010.

Zambia
In 2000, about 32 per cent of Zambia’s land was un-

der treecover, a figure which by 2020 had fallen to less
than 30 per cent [17]. Historical and recent deforesta-
tion rank the country as containing the fourth largest
amount of deforested area [33]. Agriculture is again the
largest threat to Zambia’s remaining forests [34].

In recent years, there have been efforts to improve
Zambia’s stewardship of its natural resources. For in-
stance, in 2018, the country’s government, in partner-
ship with the World Bank, launched a program intend-
ing to “improve sustainable land management, diver-
sify livelihoods options available to rural commodities,
including climate-smart agriculture and forest-based
livelihoods, and reduce deforestation in the country’s
Eastern Province” [35]. The Zambian government, with
support from the United States Agency for International
Development (USAID), is also working to develop a
Reducing Emissions from Deforestation and Degrada-
tion strategy [33].

Prior to 2010, ODA levels as a percentage of GNI
were more than twice low income country average lev-
els, but the ratio has dropped below that average since
2010, remaining relatively stable at around five per cent.

2.2. Machine learning

Machine learning is an expansive field and the in-
formation presented in this section is only a casual in-
troduction to the topic. Specific algorithms will be dis-
cussed in further detail in the next section. For more in-
formation on machine learning in general, see [36]. For
a more comprehensive background, see [37] or [38].

Machine learning refers to the study and application
of algorithms whose crucial characteristic is the ability
to improve their predictive performance automatically
through the use of data. I.e., no human has to explicitly
program or give instructions to the algorithm in order
for it to produce its predictions or output. This learning
and improvement process is referred to as “training” the
model using existing or historical data. Machine learn-
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ing is broadly generalizable into two areas: supervised
learning and unsupervised learning. Supervised learn-
ing refers to algorithms and applications where both
model inputs and outputs are provided to the model in
training. That is, the output of the model is an existing
variable with data available at the time of training. An
example of a supervised machine learning application
would be predicting sales of a company based on its
advertisement spending. Unsupervised learning refers
to the situation where the target variable is unknown
or undefined. This paper is concerned with supervised
machine learning, as the application has a well-defined
target variable, explained in Section 3.

The first step in a supervised machine learning appli-
cation is defining and gathering input and output vari-
ables. Input variables are the data the model will use to
try and predict the output variable. The output, or target
variable, is the variable of interest. The model is then
trained on data where both the input and output vari-
ables are present. In this way, the model can establish
the relationship between input and output. The ultimate
goal is to generate predictions of the output variable in
cases where its value is not known. This is referred to as
inference. However, before the inference step, it is im-
portant to assess the performance of the model to make
sure that it can generate good predictions. For this, it
is necessary to test the model and generate predictions
on input data where the output is known. This should
not be done on the same data the model was trained
on, however. This can lead to the issue of overfitting,
where a machine learning model may pick up on noise
in the data and subsequently produce very accurate pre-
dictions on data it was trained on, but generalize very
poorly to new data it has not seen before. To ensure
against this, the model is typically tested on a test set,
consisting of data the model has never seen before, i.e.,
data it was not trained on. In the test set, both input and
output variables are present. In this way, the test input
data can be used to generate predictions which can then
be compared with the actual values of the output vari-
able. Good accuracy between these test predictions and
the actual values can then give a better indication of the
model’s performance.

This process is perhaps best clarified by way of ex-
ample. Say a company is looking to predict its revenues
based on its advertisement spends. It has three adver-
tisement channels, TV, radio, and online. It has five
years of monthly data on how much it spends on each
of these channels. These are the input variables. The
output variable is monthly revenue, for which it also
has the same five years of monthly data as the input

variables. Keeping in mind that it needs test data to
assess its model on, it sets aside the last year’s worth
of data for testing. This 80-20 per cent split of train-
ing and test data is a commonly used rule of thumb
ratio in machine learning. It then trains a model using
the first four years’ worth of data, where the algorithm
automatically determines the relationship between the
input and output variables. The company then gives
the trained model the last year’s input data, generating
predictions for monthly revenue. These predictions are
compared with the actual monthly revenue for the last
year. If these predictions are sufficiently accurate, the
company can finalize their model and begin using it for
inference. With their trained model, they can now do
things like scenario analysis, where they see how dif-
ferent advertisement allocations affect revenue in order
to maximize the expected return of their spending, and
revenue forecasting. For instance, if they have a good
idea of the advertising budget available to them over the
next year, they can then generate a forecast of revenues
based on those figures. This is just one example of a
machine learning application, but this approach can be
generalized to many different situations.

3. Empirical analysis

3.1. Data

Data for the analysis came from two principal
sources: the Organisation for Economic Co-operation
and Development (OECD) for information on ODA and
aid activities, and Global Forest Watch for informa-
tion on deforestation rates. Two separate series were
collected by country from the OECD: ODA by eco-
nomic sector [39], and aid activities targeting Global
Environmental Objectives [40], a.k.a., aid activities by
Rio Marker [5]. From Global Forest Watch, the ”global
annual tree cover loss” series was used [17]. All se-
ries were published at an annual frequency and trans-
formed to year-over-year growth rates. Data were trans-
formed to growth rates for two reasons. First, to provide
a clearer semantic interpretation of the data and improve
comparability and interpretation across countries. Data
in hectares needs to be contextualized to each individ-
ual country to be able to be understood. Is predicted
deforestation of 50 000 hectares a lot or a little? For a
country like St. Vincent and the Grenadines, this is a
massive amount of deforestation, greater in fact than
the size of the entire country, while for a country like
Brazil, this represents less than 0.005 per cent of its
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land area. Data in hectares needs to be contextualized
not only across countries, but also temporally. 50 000
hectares of deforestation is not a large number rela-
tive to the size of Brazil, but how does this compare
to last year? Is the figure moving up or down, by how
much? The growth rate transformation addresses both
of these aspects. Second, the transformation improves
the performance of many machine learning approaches
by scaling all input and output variables to a smaller
range. Hectares and dollars can occupy ranges from
thousands to millions or billions, but growth rates tend
to be much more constrained, rarely extending much
beyond ± 300 per cent in the dataset. See section ”Scal-
ing of data in neural network models” of [41] for more
information on the impact of scaling data for neural
networks in particular. The final dataset consisted of
annual observations dating from 2006 to 2019 for 6
countries: the Democratic Republic of the Congo, Haiti,
Liberia, Madagascar, Solomon Islands, and Zambia.

3.2. Methodologies

Gradient boost
Two machine learning methodologies were used in

modelling deforestation as a function of ODA and aid
spending: gradient boosted trees and long short-term
memory artificial neural networks. Gradient boosted
trees is an ensemble machine learning algorithm that
builds off the results of several simpler decision tree
models. A decision tree works by having all data start
in one group at the root of the tree, and then splitting
the data into groups at different nodes depending on the
data’s features and the information gain from the split.
The new groups are then split further on more detailed
information, and so on until either all observations have
been separated or until a pre-determined number of
splits. For more information on decision trees, see [42]
or [43].

Individual decision trees are generally not very per-
formant and prone to issues like overfitting. However,
they are often used as the base for ensemble method-
ologies, as with gradient boosted trees. The approach
sequentially combines individual decision trees. Each
subsequent addition is then trained to reduce the er-
rors of the previous iteration. By combining multiple
decision trees in this manner, the model can achieve
results far superior to those of any individual decision
tree. See [44] for more information on the topic. Gradi-
ent boosted trees are one of the most popular machine
learning methodologies employed for a variety of appli-
cations [45] and have been shown to outperform linear
models in time series prediction applications such as
this one [46], hence their selection for the analysis.

Long short-term memory artificial neural networks
(LSTM)

LSTMs are a variant of artificial neural network
(ANN). Over the past decade, ANNs have garnered
much interest due to their impressive performance in
applications such as image recognition, autonomous
driving, and natural language processing. ANNs are
composed of interconnected layers of nodes. These lay-
ers receive input, transform that input by multiplying it
by coefficients and running it through activation func-
tions, before finally generating an output or predic-
tion. Coefficients are randomized initially but are then
adjusted via a process called back propagation. Back
propagation involves defining a cost function, calcu-
lating gradients with respect to this function, and then
adjusting the coefficients in the direction of minimizing
error. In a feedforward multilayer perceptron (MLP),
the simplest type of ANN, information flows through
this network unidirectionally, from beginning to end.
See [47] or [48] for more information on ANNs.

The unidirectional nature of feedforward ANNs
means they are not always best-suited to deal with in-
formation with a temporal element. Recurrent neural
networks (RNN) address this issue by introducing feed-
back loops to the network architecture. This makes them
well-suited to applications with a time element, such
as speech processing. For more information on RNNs,
see [49] or [50]. RNNs can have trouble modelling long
term temporal dependencies due to the issue of van-
ishing or exploding gradients [51]. LSTMs solve this
issue by introducing a memory cell, along with an in-
put, output, and forget gate. Gradients are subsequently
able to travel through the network unchanged, allow-
ing the LSTM to preserve longer term dependencies
than RNNs. For more information on the architecture
of LSTMs, see [52] or [53]. LSTMs have been shown
to perform well in economic applications, such as in
nowcasting global trade or US GDP [54,55].

3.3. Model training

In order to train and assess the models, the data were
split into a train and test set. The train set consisted
of data dating from 2006 to 2015, while the test set
dated from 2016 to 2019. The logic of having a train
and test set was to ensure the robustness of the models.
A model may perform well on data it has been trained
on, but may generalize poorly to new, unseen data. By
evaluating the models on the test set, we can be sure
that the model is not overfit to the train data and can
perform adequately into the future on new data.
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Fig. 3. Year-over-year deforestation rates in the Democratic Republic of the Congo. Note: results shown using the LSTM algorithm and ODA by
economic sector input variables.

The test set was also used to determine hyperparame-
ters. Hyperparameters are parameters which determine
the macrostructure of a machine learning algorithm.
This differs from the model’s coefficients, which are
determined in the course of training or fitting the model
to the data. Hyperparameters are set before a model is
trained. In the case of a simple decision tree, hyperpa-
rameters may correspond to characteristics such as the
max depth of the tree, i.e., the number of splits a tree can
have. This can be unlimited, where splitting continues
until all observations reside by themselves on a unique
leaf, or can be limited to just two in the extreme, where
the initial data is split into just two separate groups. De-
pending on the algorithm, hyperparameters can have a
large impact on the predictive performance of a model.
As such, they often need to be tuned. That is, define
a cost function, such as mean absolute error (MAE)
for a regression application, then train the model with
various combinations of hyperparameters, and finally
assess performance based on the cost function. The hy-
perparameters of the best-performing model are then
used for the final model. In the ideal case, the train set is
further split into a validation set for determining hyper-
parameters, but due to the low number of observations
available in the data and the illustrative nature of the
analysis the test set was used here.

In terms of input variables, three separate sets of vari-
ables were examined. The first corresponded to includ-
ing only ODA by economic sector; the second to aid
activities by Rio Marker; the third to the combination
of both previous sets of variables. The best-performing

Table 1
MAE and RMSE on the test set, by country

Country MAE RMSE
1 Democratic Republic of the Congo 0.13 0.15
2 Haiti 1.45 2.11
3 Liberia 0.07 0.08
4 Madagascar 0.15 0.17
5 Solomon Islands 0.16 0.20
6 Zambia 0.12 0.13

models in terms of MAE and root mean square error
(RMSE) for each country are presented in the next sec-
tion.

4. Results and interpretation

Table 1 displays MAE and RMSE of each country
on the test set, while Figs 3–8 display the modelling
results for each of the six countries graphically. From
Table 1 we can see that the model for Liberia obtained
the best performance, while that for Haiti obtained the
worst. In the case of Haiti, there is a reason for the poor
performance which is discussed in the commentary for
Fig. 4. Commentary for the results of each country
follows.

For the Democratic Republic of the Congo, an LSTM
model taking economic sector-disaggregated ODA data
as inputs displayed promising predictive potential. 2016
and 2019 predictions were quite accurate, with predic-
tions just seven and three percentage points off actu-
als, respectively. Rates for 2017 and 2018, however,
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Fig. 4. Year-over-year deforestation rates in Haiti. Note: results shown using the gradient boost algorithm and ODA by economic sector input
variables.

Fig. 5. Year-over-year deforestation rates in Liberia. Note: results shown using the gradient boost algorithm and aid activities by Rio Marker input
variables.

were relatively over and under-estimated, respectively.
The overall downward trend in deforestation rates be-
tween 2016 and 2019 was accurately captured by the
model.

In 2016, Haiti was hit by Hurricane Matthew, a Cat-
egory 5 hurricane and the strongest to hit the country
since 1964. Unfortunately, the storm’s effects were even
worse than in 1964 due to the effects of extensive de-
forestation and soil erosion, leading to more than 500
deaths [56]. Ultimately, factors linked to the storm led
to record rates of deforestation in 2016, clearly visible

in Fig. 4.
Lacking variables capturing the impacts of natural

disasters on deforestation, the model struggled might-
ily with its 2016 prediction, as might be expected. In
subsequent years, it continued to overestimate rates of
deforestation, potentially indicating that much of the
deforestation that may have happened from 2017–2019
was brought forward to 2016. Despite high errors in
absolute levels of deforestation growth rates, the model
remained quite accurate in capturing relative year to
year changes in rates.
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Fig. 6. Year-over-year deforestation rates in Madagascar. Note: results shown using the gradient boost algorithm and aid activities by Rio Marker
input variables.

Fig. 7. Year-over-year deforestation rates in Solomon Islands. Note: results shown using the LSTM algorithm and ODA by economic sector input
variables.

The model for Liberia slightly underestimated de-
forestation growth rates in 2016 and 2017, by four
and eight percentage points, respectively, while slightly
overestimating them in 2018 and 2019, by four and 13
percentage points, respectively. Again, the model was
able to capture relative trends in the test period, includ-
ing a relative spike in rates in 2017 and a subsequent
tapering off thereafter.

The model for Madagascar underestimated rates by
17 percentage points in 2016, but was remarkably ac-

curate for 2017, predicting values just two percentage
points different from actual observations. Predictions
in 2018 and 2019 both overestimated rates, especially
in 2019, where they were 28 percentage points higher
than actuals.

The model for Solomon Islands struggled in all years
but 2016, where its predictions were off by a mere 60
basis points. Thereafter, however, it produced predic-
tions consistently higher than actuals, with an increas-
ing error over time. This positive bias indicates that
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Fig. 8. Year-over-year deforestation rates in Zambia. Note: results shown using the gradient boost algorithm and both ODA by economic sector
and aid activities by Rio Marker input variables.

there may be an important component driving defor-
estation not captured in the model.

The model for Zambia was quite accurate for 2016
and 2017, its predictions differing from actuals by only
10 percentage points and seven percentage points, re-
spectively. This error rose to 13 percentage points in
2018 and 20 percentage points in 2019. Despite 2019’s
relatively large error, the model was able to success-
fully capture 2016’s increase in rates and decline in
subsequent years.

5. Conclusion

The exploratory analysis conducted for this paper
demonstrates the potential and possibilities that ma-
chine learning could provide in understanding interde-
pendencies between spending decisions and environ-
mental outcomes. It could become a key component of
evidence-based policy design and budgeting and help
policymakers allocate funds in an optimal manner to
achieve both socio-economic and environmental goals.

Despite limitations in the pilot dataset, including
a training set consisting of only 10 years of annual
data, modelling was able to produce surprisingly accu-
rate predictions of yearly deforestation growth rates in
several countries, such as in Liberia and Zambia. For
others, despite large errors in actual predicted values,
trends were still accurately captured, such as in Haiti
and the Democratic Republic of the Congo. These are
promising indications that, with additional data and re-

search, similar models could be used by policymak-
ers and budget planners to help inform their decision-
making.

While the predictions of a machine learning model
should never be taken as fact, they could prove im-
mensely useful in running scenario analyses, where
different provisional budgets could be run through a
model trained on historical budgets to gain insights on
the directionality and magnitude of effects on various
environmental and socio-economic indicators. Machine
learning could become yet another tool in policymak-
ers’ arsenal to make better informed decisions on how
spending allocations could impact the environment.
With more insight to how present and future spend-
ing decisions impact various environmental indicators,
policymakers could more accurately forecast the future
environmental state of their countries and preempt and
adapt to current and future challenges, rather than react.

A more comprehensive pilot study in collaboration
with a national government using historical budget
data would serve as a valuable next step in exploring
this innovative method of transforming public finance
decision-making.
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